Статья
2016

Ion pairs in aqueous electrolyte microdrops under conditions of a flat nanopore


S. V. Shevkunov S. V. Shevkunov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110112
Abstract / Full Text

The molecular mechanisms of aqueous solvent penetration into a flat nanopore with hydrophobic structureless walls containing a Na+Cl ion pair with nonfixed distance between ions is studied by computer simulations. A detailed many-body polycenter model of intermolecular interactions calibrated with respect to experimental data for the free energy of attachment of water vapor molecules and quantum-chemical calculations in clusters is used. The ion pair hydration results in its decomposition. Drawing the molecules into the gap between ions makes easier penetration of solvent and filling of the nanopore with electrolyte. The ion-pair dissociation is accompanied by dramatic changes in the chemical potential of molecules and electric properties of the whole system. The thermodynamic characteristics of decomposition are stable as regards variations in the pore width. The post-decomposition electric polarizability demonstrates strong anisotropy associated with the nanopore flatness.

Author information
  • Peter-the-Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia

    S. V. Shevkunov

References
  1. Li, G.V., Astrova, E.V., Rumyantsev, A.M., Voronkov, V.B., Parfen’eva, A.V., Tolmachev, V.A., Kulova, T.L., and Skundin, A.M., Russ. J. Electrochem., 2015, vol. 51, p. 899.
  2. Verbrugge, M.W. and Liu, P., J. Electrochem. Soc., 2005, vol. 152, p. D79.
  3. Bower, A.F., Guduru, P.R., and Sethuraman, V.A., J. Mech. Phys. Solids, 2011, vol. 59, p. 804.
  4. Franco, A.A., Schott, P., Jallut, C., and Maschke, B., Fuel Cells, 2007, vol. 2, p. 99.
  5. Biesheuvel, P.M., Franco, A.A., and Bazant, M.Z., J. Electrochem. Soc., 2009, vol. 156, p. B225.
  6. Chan, K. and Eikerling, M., J. Electrochem. Soc., 2011, vol. 158, p. B18.
  7. Yuan, M., Liu, W., Zhu, Y., and Xu, Y., Russ. J. Electrochem., 2014, vol. 50, p. 594.
  8. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Russ. J. Electrochem., 2014, vol. 50, p. 419.
  9. Ponomarenko, I.V., Parfenov, V.A., Solyanikova, A.S., Chayka, M.Y., Kravchenko, T.A., and Kirik, S.D., Russ. J. Electrochem., 2015, vol. 51, p. 764.
  10. Eikerling, M., Kornyshev, A.A., and Lust E., J. Electrochem. Soc., 2005, vol. 152, p. E24.
  11. Griffiths, S.K. and Nilson, R.H., J. Electrochem. Soc., 2010, vol. 157, p. A469.
  12. Robinson, D.B., Max Wu, C.A., and Jacobs, B.W., J. Electrochem. Soc., 2010, vol. 157, p. A912.
  13. Feng, G., Qiao, R., Huang, J., Sumpter, B.G., and Meunier, V. ACS Nano, 2010, vol. 4, p. 2382.
  14. Vasil’eva, V.I., Akberova, E.M., Shaposhnik, V.A., and Malykhin, M.D., Russ. J. Electrochem., 2014, vol. 50, p. 789.
  15. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M., Nature, 2008, vol. 452, p. 301.
  16. Biesheuvel, P.M., Limpt, B., and van der Wal, A., J. Phys. Chem. C, 2009, vol. 113, p. 5636.
  17. Noked, M., Avraham, E., Soffer, A., and Aurbach, D., J. Phys. Chem. C, 2009, vol. 113, p. 21319.
  18. Biesheuvel, P.M. and van der Wal, A., J. Membr. Sci., 2010, vol. 346, p. 256.
  19. Li, H., Zou, L., Pan, L., and Sun, Z., Environ. Sci. Technol., 2010, vol. 44, p. 8692.
  20. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A., J. Colloid Interface Sci., 2011, vol. 361, p. 239.
  21. Choi, W., Ulissi, Z.W., Shimizu, S.F.E., Bellisario, D.O., Ellison, M.D., and Strano, M.S., Nat. Commun., 2013, vol. 4, p. 2397.
  22. Liu, H., Jameson, C.J., and Murad, S., Mol. Simul., 2008, vol. 34, p. 169.
  23. Cazade, P.-A., Dweik, J., Coasne, B., Henn, F., and Palmeri, J., J. Phys. Chem. C., 2010, vol.,14, p. 12245.
  24. Meng, L., Li, Q., and Shuai, Zh., J. Chem. Phys., 2008, vol. 128, p. 134703.
  25. Hou, Ch.H., Taboada-Serrano, P., Yiacoumi, S., and Tsouris, C., J. Chem. Phys., 2008, vol. 129, p. 224703.
  26. Chandler, D., Nature, 2005, vol. 437, p. 640.
  27. Hou, Ch.-H., Taboada-Serrano, P., Yiacoumi, S., and Tsouris, C., J. Chem. Phys., 2008, vol. 128, p. 044705.
  28. Cazade, P.-A., Hartkamp, R., and Coasne, B., J. Phys. Chem. C, 2014, vol. 118, p. 5061.
  29. Shevkunov, S.V., J. Exp. Theor. Phys., 2009, vol. 108, p. 447.
  30. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956 (translated into Russian).
  31. Perera, L. and Berkowitz, M.L., J. Chem. Phys., 1991, vol. 95, p. 1954.
  32. Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 1995, vol. 117, p. 4177.
  33. Dang, L.X., J. Phys. Chem., 1998, vol. 102, p. 620.
  34. Herce, D.H., Perera, L., Darden, T.A., and Sagui, C.J., Chem. Phys., 2005, vol. 122, p. 24513.
  35. Chang, T.M. and Dang L.X., Chem. Rev., 2005, vol. 106, p. 1305.
  36. Horinek, D. and Netz, R.R., Phys. Rev. Lett., 2007, vol. 99, p. 226104.
  37. Dweik, J., Coasne, B., Palmeri, J., Jouanna, P., and Gouze, P., J. Phys. Chem. C, 2012, vol. 116, p. 726.
  38. Shevkunov, S.V., Colloid J., 2010, vol. 72, p. 93.
  39. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 228.
  40. Arshadi, M., Yamdagni, R., and Kebarle, P., J. Phys.Chem., 1970, vol. 74, p. 1466.
  41. Hiroaka, K., Mizuse, S., and Yamade, S., J. Phys. Chem., 1988, vol. 92, p. 3943.
  42. Olleta, A.C., Lee, H.M., and Kim, K.S., J. Chem. Phys., 2006, vol. 124, p. 024321.
  43. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook on Atomic and Molecular Physics, Moscow: Atomizdat, 1980.
  44. Shevkunov, S.V., Colloid. Zh., 1983, vol. 45, p. 1019.
  45. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, Cl., Chem. Phys., 2005, vol. 310, p. 97.
  46. Shevkunov, S.V., J. Exp. Theor. Phys., 2009, vol. 108, p. 447.
  47. Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 509.
  48. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.
  49. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.
  50. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.
  51. Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1127.
  52. Shevkunov, S.V., Russ. J. Electrochem., 2002, vol. 38, p. 300.
  53. Shevkunov, S.V., JETP Lett., 2002, vol. 76, p. 700.
  54. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 230.
  55. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 495.
  56. Shevkunov, S.V., Colloid J., 2004, vol. 66, p. 506.
  57. Shevkunov, S.V., High Energy Chem., 2005, vol. 39, p. 351.
  58. Shevkunov, S.V., Russ. J. Gen. Chem., 2008, vol. 78, p. 355.
  59. Shevkunov, S.V., High Energy Chem., 2008, vol. 42, p. 205.
  60. Shevkunov, S.V., Colloid J., 2008, vol. 70, p. 646.
  61. Shevkunov, S.V., Russ. J. Phys. Chem. A, 2008, vol. 82, p. 1878.
  62. Shevkunov, S.V., High Energy Chem., 2009, vol. 43, p. 341.
  63. Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 135.
  64. Shevkunov, S.V., Russ. J. Electrochem., 2013, vol. 49, p. 238.
  65. Shevkunov, S.V., Comput. Math. Math. Phys., 2005, vol. 45, p. 2196.
  66. Berkowitz, M., Karim, O.A., McCammon, J.A., and Rossky, A.P., Chem. Phys. Lett., 1984, vol. 105, p. 577.
  67. Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 137.