New Composite Proton-Conducting Membranes Based on Nafion and Cross-Linked Sulfonated Polystyrene

A. A. Arslanova A. A. Arslanova , E. A. Sanginov E. A. Sanginov , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii
Российский электрохимический журнал
Abstract / Full Text

New composite membranes based on commercial perfluorinated Nafion-115 membrane and cross-linked sulfonated polystyrene were synthesized and investigated. The membranes were prepared by radical polymerization of styrene in the presence of a cross-linking agent divinylbenzene in Nafion polymer matrix and subsequent sulfonation of formed polystyrene. The membranes containing approximately 5 and 10 wt % of cross-linked polystyrene with ion-exchange capacity of 1.1 to 1.3 mg-eq/g were obtained. Modification with sulfonated polystyrene leads to an increase in the moisture content and proton conductivity of membranes in the humidity range of 15 to 100 RH.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Akad. Semenova 1, Chernogolovka, Moscow oblast, 132432, Russia

    A. A. Arslanova, E. A. Sanginov & Yu. A. Dobrovol’skii

  • Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow, 119991, Russia

    A. A. Arslanova

  1. Souzy, R. and Ameduri, B., Functional fluoropolymers for fuel cell membranes, Prog. Polym. Sci., 2005, vol. 30, no. 6, p. 644.
  2. Ivanchev, S.S., and Myakin, S.V., Polymer membranes for fuel cells: manufacture, structure, modification, properties, Russ. Chem. Rev., 2010, vol. 79, no. 2, p. 101.
  3. Zhang, H.W. and Shen, P.K., Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev., 2012, vol. 112, no. 5, p. 2780.
  4. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.
  5. Ahmad, H., Kamarudin, S.K., Hasran, U.A., and Daud, W.R.W., Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energy, 2010, vol. 35, p. 2160.
  6. Laberty-Robert, C., Valle, K., Pereira, F., and Sanchez, C., Design and properties of functional hybrid organic-inorganic membranes for fuel cells, Chem. Soc. Rev., 2011, vol. 40, p. 961.
  7. Thiam, H.S., Daud, W.R.W., Kamarudin, S.K., Mohammad, A.B., Kadhum, A.A.H., Loh, K.S., and Majlan, E.H., Overview on nanostructured membrane in fuel cell applications, Int. J. Hydrogen Energy, 2011, vol. 36, p. 3187.
  8. Mishra, A.K., Bose, S., Kuila, T., Kim, N.H., and Lee, J.H., Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci., 2012, vol. 37, p. 842.
  9. Kim, D.J., Jo, M.J., and Nam, S.Y., A review of polymer- nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 2015, vol. 21, p. 36.
  10. Yaroslavtsev, A.B., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, Russ. Chem. Rev., 2009, vol. 78, no. 11, p. 1013.
  11. Yaroslavtsev, A.B., Perfluorinated ion exchange membranes, Polym. Sci., Ser. A., 2013, vol. 55, p. 674.
  12. Neburchilov, V., Martin, J., Wang, H., and Zhang, J., A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 2007, vol. 169, p. 221.
  13. Song, M.K., Kim, Y.T., Fenton, J.M., Kunz, H.R., and Rhee, H.W., Chemically-modified Nafion®/ poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells, J. Power Sources, 2003, vol. 117, p. 14.
  14. Wycisk, R., Chisholm, J., Lee, J., Lin, J., and Pintauro, P.N., Direct methanol fuel cell membranes from Nafion—polybenzimidazole blends, J. Power Sources, 2005, vol. 163, p. 9.
  15. DeLuca, N.W. and Elabd, Y.A., Nafion®/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties, J. Membrane Sci., 2006, vol. 282, p. 217.
  16. DeLuca, N.W. and Elabd, Y.A., Direct methanol fuel cell performance of Nafion®/poly(vinyl alcohol) blend membranes, J. Power Sources, 2006, vol. 163, p. 386.
  17. Florjanczyk, Z., Wielgus-Barry, E., and Poltarzewski, Z., Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, vol. 145, p. 119.
  18. Bae, B., Ha, H.Y., and Kim, D., Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells, J. Membrane Sci., 2006, vol. 276, p. 51.
  19. Kundu, P.P., Kim, B.T., Ahn, J.E., Han, H.S., and Shul, Y.G., Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell. 1. Crosslinked sulfonated polystyrene in the pores of Nafion 117, J. Power Sources, 2007, vol. 171, p. 86.
  20. Sanginov, E.A., Evshchik, E.Yu., Kayumov, R.R., and Dobrovol’skii, Yu.A., Lithium-ion conductivity of the Nafion membrane swollen in organic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 986.
  21. Bartholin, M., Boissier, G., and Dubois, J., Styrene–divinylbenzene copolymers. 3. Revisited IRanalysis, Makromol. Chem., 1981, vol. 182, p. 2075.
  22. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Sanginov, E.A., and Dobrovol’skii Yu.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.
  23. Zundel, G., Hydrate structures, intermolecular interactions and proton conducting mechanism in polyelectrolyte membranes—infrared results, J. Membrane Sci., 1982, vol. 11, p. 249.
  24. Safronova, E.Yu., Golubenko, D.V., Shevlyakova, N.V., D’yakova, M.G., Tverskoi, V.A., Dammak, L., Grande, D., and Yaroslavtsev, A.B., New cation exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems, J. Membrane Sci., 2016, vol. 515, p. 196.