Examples



mdbootstrap.com



 
Статья
2021

Propagation Ultrasound Velocity at Plastic Deformation of Fe–Cr–Ni Alloy within 180–318 K


S. A. BarannikovaS. A. Barannikova, S. V. KolosovS. V. Kolosov, A. M. NikonovaA. M. Nikonova
Российский физический журнал
https://doi.org/10.1007/s11182-021-02346-x
Abstract / Full Text

The paper studies the mechanical properties of the Fe–Ni–Cr alloy and the ultrasound propagation velocity (Rayleigh waves) during its plastic deformation within the temperature range of 180 ≤ T ≤ 318 K. Rayleigh wave propagation velocity is measured by a periodic generation of 100 ns pulses by a transmitting piezoelectric transducer and wave propagation recording by a receiving piezoelectric transducer connected to a digital oscilloscope. It is shown that the temperature decrease changes not only the deformation curve at the uniaxial tension, but also the stress-strain curve of the ultrasound velocity associated with the growth in the martensitic α′-phase appeared after the γ–α′ phase transformation.

Author information
  • The Institute of Strength Physics and Materials Science SB RAS, Tomsk, RussiaS. A. Barannikova, S. V. Kolosov & A. M. Nikonova
References
  1. J. Pelleg, Mechanical Properties of Materials, Springer, Dordrecht (2013).
  2. V. S. Boiko, R. I. Garber, and A. M. Kossevich, Reversible Crystal Plasticity [in Russian], Nauka, Moscow (1991).
  3. A. B. Lebedev, Fiz. Tverd. Tela, 35, No. 9, 2305–2341 (1993).
  4. M. S. Blanter, I. S. Golovin, S. A. Golovin, et al., Mechanical Spectroscopy of Metallic Materials [in Russian], MIA, Moscow (1994).
  5. V. V. Murav’ev, L. B. Zuev, and K. L. Komarov, Sound Velocity and Structure of Steels and Alloys [in Russian], Nauka, Novosibirsk (1996).
  6. M. Kobayashi, Int. J. Plasticity, 26, No. 1, 107–125 (2010).
  7. X. Ding, X. Wu, and Y. Wang, Ultrasonics, 54, No. 3, 914–920 (2014).
  8. D. Torello, S. Thiele, K. H. Matlack, et al., Ultrasonics, 56, 417–426 (2015).
  9. V. Marcantonio, D. Monarca, A. Colantoni, and M. Cecchini, Mech. Syst. Signal. Process., 120, 32–42 (2019).
  10. S. A. Barannikova, A. V. Bochkareva, A. G. Lunev, et al., Steel Transl., 46, No. 8, 552–557 (2016).
  11. A. G. Lunev, M. V. Nadezhkin, S. A. Barannikova, and L. B. Zuev, Acta Phys. Pol. A, 134, No. 1, 342–345 (2018).
  12. S. A. Barannikova, A. G. Lunev, A. V. Bochkareva, and L. B. Zuev, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, 6/2, 20–24 (2015).
  13. J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 36, No. 2, 421–32 (2005).
  14. K. Spencer, J. D. Embury, K. T. Conlon, et al., Mat. Sci. Eng. A-Struct., 387, 873–881 (2004).
  15. F. Hahnenberger, R. Skorupski, M. Smaga, and D. Eifler, Mater. Sci. Forum., 738–739, 217–221 (2013).
  16. P. Mallick, N. K. Tewary, S. K. Ghosh, and P. P. Chattopadhyay, Mater. Charact., 133, 77–86 (2017).
  17. C. Zheng and W. Yu. Mat. Sci. Eng. A-Struct., 710, 359–365 (2018).
  18. H. J. Frost and M. F. Ashby, A Second Report on Deformation-Mechanism Maps [Russian translation], Metallurgiya, Chelyabinsk (1989).