Examples



mdbootstrap.com



 
Статья
2021

Mechanism and Thermodynamic Characteristics of the Dehydration of \({{{\text{H}}}_{3}}{\text{SO}}_{4}^{ + }\) Cations


A. A. DegtyarevA. A. Degtyarev, T. P. DyachkovaT. P. Dyachkova, D. P. RostovaD. P. Rostova, A. V. RukhovA. V. Rukhov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421080082
Abstract / Full Text

Results are presented from determining the adequacy of different DFT functionals in describing the isomerization and dehydration of \({{{\text{H}}}_{{\text{3}}}}{\text{SO}}_{4}^{ + }\) cations. The best way of doing so is selected. The mechanism of the formation of \({\text{HSO}}_{3}^{ + }\) cations in vacuo and with indirect consideration of the solvent is studied using the COSMO model. Anhydrous sulfuric acid and oleum with 5 and 15% wt % SO3 concentrations are selected as solvents. Thermodynamic characteristics of the formation of \({\text{HSO}}_{3}^{ + }\) cations are determined. It is shown that in the temperature range of 25 to 100°С, this process is unlikely to occur either in vacuo or in solvent.

Author information
  • Tambov State Technical University, 392000, Tambov, RussiaA. A. Degtyarev, T. P. Dyachkova, D. P. Rostova & A. V. Rukhov
References
  1. M. Weller, T. Overton, F. Armstrong, and J. Rourke, Inorganic Chemistry (Oxford Univ. Press, 2018).
  2. R. Bruckner, Advanced Organic Chemistry: Reaction Mechanisms (Academic, New York, 2001).
  3. C. A. Pommerening, M. B. Steven, and S. S. Lee, J. Phys. Chem. A 103, 1214 (1999). https://doi.org/10.1021/jp984104w
  4. R. Sinha, B. Chiavarino, S. Fornarini, et al., J. Phys. Chem. Lett. 1, 1721 (2010). https://doi.org/10.1021/jz100458q
  5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  6. Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006). https://doi.org/10.1063/1.2370993
  7. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785
  8. J. B. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933
  9. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2006). https://doi.org/10.1007/s00214-007-0310-x
  10. Y. Tawada, T. Tsuneda, S. Yanagisawa, et al., J. Chem. Phys. 120, 8425 (2004). https://doi.org/10.1063/1.1688752
  11. A. Najibi and L. Goerigk, J. Chem. Theor. Comput. 14, 5725 (2018).
  12. A. Karton, A. Tarnopolsky, J.-F. Lamère, et al., J. Phys. Chem. A 112, 12868 (2008). https://doi.org/10.1021/jp801805p
  13. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759
  14. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
  15. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495
  16. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). https://doi.org/10.1063/1.462569
  17. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). https://doi.org/10.1063/1.464303
  18. C. Riplinger, P. Pinski, U. Becker, et al., J. Chem. Phys. 144, 024109 (2016). https://doi.org/10.1063/1.4939030
  19. C. Hättig, G. Schmitz, and J. Kossmann, Phys. Chem. Chem. Phys. 14, 6549 (2012). https://doi.org/10.1039/c2cp40400a
  20. K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 84102 (2008). https://doi.org/10.1063/1.2831537
  21. A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993). https://doi.org/10.1039/P29930000799
  22. G. Warlafen, J. Chem. Phys. 40, 2326 (1964). https://doi.org/10.1063/1.1725511
  23. A. Klamt, F. Eckert, and W. Arlt, Ann. Rev. Chem. Biomol. Eng. 1, 101 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-100903
  24. F. Neese, WIREs Comput. Mol. Sci. 8, e1327 (2017). https://doi.org/10.1002/wcms.1327
  25. B. M. Bode and M. S. Gordon, J. Mol. Graph. Mod. 16, 133 (1998). https://doi.org/10.1016/S1093-3263(99)00002-9
  26. A. Givan, A. Loewenschuss, K. J. Nielsen, and M. Rozenberg, J. Mol. Struct. 830, 21 (2007). https://doi.org/10.1016/j.molstruc.2006.06.027
  27. H. Arstila, K. Laasonen, and A. Laaksonen, J. Chem. Phys. 108, 1031 (1998). https://doi.org/10.1063/1.475496
  28. A. A. Degtyarev and D. P. Rostova, Butlerov Communications 62, 51 (2020). https://doi.org/10.37952/ROI-jbc-01/20-62-4-51
  29. A. A. Degtyarev, A. Yu. Osetrov, and D. P. Rostova, Butlerov Communications 63, 64 (2020). https://doi.org/10.37952/ROI-jbc-01/20-63-8-64