Examples



mdbootstrap.com



 
Статья
2022

Nanoparticles of Nickel Hexacyanoferrate Derivatives as the Components of Electrode Materials for Electrochemical Capacitors


V. V. ChernyavinaV. V. Chernyavina, A. G. BerezhnayaA. G. Berezhnaya, A. V. PanchenkoA. V. Panchenko
Российский электрохимический журнал
https://doi.org/10.1134/S102319352112003X
Abstract / Full Text

Nickel–potassium hexacyanoferrate (KNiHCF) and its analogues (NaKNiHCF) with different Na : K ratio are synthesized by chemical coprecipitation. The salt structure is characterized by the methods of X-ray diffraction, energy-dispersive microanalysis, and transmission electron microscopy. The electrochemical characteristics of composite electrodes containing 20 wt % salt are studied by the methods of cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. The composite electrodes are shown to exhibit the higher specific capacitance (Сsp) as compared with the carbon electrode. The incorporation of sodium into the KNiHCF structure increases Сsp at the high charge–discharge rates. It is shown that electrodes containing the analogue of NaKNiHCF with the Na/K ratio 0.92 : 0.24 demonstrate the high electronic and ionic conductivity and the low equivalent series resistance and charge-transfer resistance. The latter material can be used as the cathode material in hybrid electrochemical capacitors. The ease of synthesis of these salts and the simple method of electrode fabrication makes possible their large-scale application in rechargeable batteries.

Author information
  • Southern Federal University, Rostov-on Don, RussiaV. V. Chernyavina, A. G. Berezhnaya & A. V. Panchenko
References
  1. Han, P., Yue, Y., Zhang, L., Xu, H., Liu, Z., Zhang, K., Zhang, C., Dong, S., Ma, W., and Cui, G., Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries, Carbon, 2012, vol. 50, p. 1355.
  2. Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., and Huang, X., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries, Nat. Commun, 2013, vol. 4, p. 2365.
  3. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, p. 419.
  4. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, N.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chernobrodov, S.P., Prospective electrode materials for supercapacitors, Elektrokhim. Energ., 2012, no. 4, p. 167.
  5. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-Ion Batteries, Russ. J. Electrochem., 2018, vol. 54, p. 113.
  6. Atamanyuk, I.N., Vervikishko, D.E., Grigorenko, A.V., Sametov, A.A., Shkol’nikov, E.I., and Yanilkin, I.V., Study of the influence of the electrodes production technological features on the electrochemical characteristics of super-capacitor with the aqueous electrolyte, Elektrokhim. Energ., 2014, no. 1, p. 3.
  7. Tsay, K.-C., Zhang, L., and Zhang, J., Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor, Electrochim. Acta, 2012, vol. 60, p. 428.
  8. Lu, Y., Wang, L., Cheng, J., and Goodenough, J.B., Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, vol. 48, p. 6544.
  9. Colin, D.W., Sandeep, V.P., Matthew, T.M., Robert, A.H., and Cui, Y., The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, vol. 159, p. 98.
  10. Sun, H., Sun, H., Wang, W., Jiao, H., and Jiao, S., Fe4[Fe(CN)6]3: a cathode material for sodium–ion batteries, R. Soc. Chem., 2014, vol. 4, p. 42991.
  11. Jia, Z., Wangab, J., and Wang, Y., Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries, RSC Adv., 2014, vol. 4, p. 22768.
  12. Wessells, C.D., Huggins, R.A., and Cui, Y., Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nature Commun., 2011, vol. 2, no. 550.
  13. You, Y., Yu, X.-Q., Yin, Y.-X., Nam, K.-W., and Guo, Y.-G., Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries, Nano Res., 2015, vol. 8, p. 117.
  14. Okubo, M., Asakura, D., Mizuno, Y., Kim, J.D., Mizokawa, T., Kudo, T., and Honma, I., Switching redox-active sites by valence tautomerism in Prussian blue analogues AxMny[Fe(CN)6nH2O (A: K, Rb): robust frameworks for reversible Li storage, J. Phys. Chem. Lett, 2010, vol. 1, p. 2063.
  15. Pabst, W. and Gregorová, E., Characterization of Particles and Particle Systems, ICT Prague, 2007.
  16. Kim, H., Hong, J., Park, K.Y., Kim, H., Kim, S.W., and Kang, K., Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 2014, vol. 114, no. 23, p. 11788.
  17. You, Y., Wu, X.L., Yin, Y.X., and Guo, Y.G., High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci., 2014, vol. 7, no. 5, p. 1643.
  18. Wu, X., Deng, W., Qian, J., Cao, Y., Ai, X., and Yang, H., Single-Crystal FeFe(CN)6 Nanoparticles: A igh capacity and high rate cathode for Na-ion batteries, J. Mater. Chem., 2013, vol. 1, no. 35, p. 10130.
  19. Lu, K., Song, B., Gao, X., Dai, H., Zhang, J., and Ma, H., High-energy cobalt hexacyanoferrate and carbon micro–spheres aqueous sodium–ion capacitors, J. Power Sources, 2016, vol. 303, p. 347.
  20. Yun, J., Pfisterer, J., and Bandarenka, A.S., How simple are the models of Na intercalation in aqueous media, Energy Environ. Sci, 2016, vol. 9, p. 955.
  21. Xu, K., Huang, X., Liu, Q., Zou, R., Li, W., Liu, X., Li, S., Yang, J., and Hu, J., Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo2O4 electrodes, J. Mater. Chem., 2014, vol. 2, p. 16731.