Examples



mdbootstrap.com



 
Статья
2018

Influence of Surfactants on the Microstructure and Performance of PDMS-E Grafted Gelatin Films


Bing YangBing Yang, Zhaosheng HouZhaosheng Hou, Meiyu SunMeiyu Sun, Jing XuJing Xu
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218020143
Abstract / Full Text

Polydimethylsiloxane grafted gelatin (PGG) polymers were prepared from mono-epoxy terminated polydimethylsiloxane (PDMS-E) macromonomer and gelatin, and surfactants were used to enhance the compatibility of the two polymers phases. The influences of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethylammonium bromide (DTBA), and Tritox-100, on the microstructure and performance of polymers films were researched. XPS and FTIR results confirmed that PDMS-E was successfully grafted to gelatin chains. The results of SEM, DSC, TGA and surface contact angle indicated that microstructure of the PGG/SDS film was mainly controlled by the grafting effect on the gelatin matrix, and a tightly cross-linked network structure formed in PGG/SDBS film. However, few changes were present in the DTAB and Tri-100 systems. Surfactants played a crucial role in deciding the detailed microstructure of the grafted gelatin films, and induced the changes of hydrophobicity, flexibility and thermal properties of the polymer films.

Author information
  • Key Laboratory of Public Security Management Technology in Universities of Shandong, Shandong Management University, Jinan, 250357, ChinaBing Yang & Meiyu Sun
  • College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, ChinaZhaosheng Hou
  • Key Laboratory of Fine Chemicals of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, ChinaJing Xu
References
  1. Zhang, X.Q., Do, M.D., Casey, P., et al., Biomacromolecules, 2010, vol. 11, no. 4, pp. 1125–1132.
  2. Veis, A., The Macromolecules Chemistry of Gelatin, Academic Press: London, 1964.
  3. Hastings, G., and Ducheyne, W.P., Macromolecular Biomaterials, CRC Press, Boca Raton, FL, 1984
  4. Sobral, P.J.A.F., Menegalli, C., Hubinger, M.D., et al., Food Hydrocolloid., 2001, vol. 15, no. 4, pp. 423–432.
  5. Yakimets, I., Wellner, N., Smith, A.C., et al., Polymer, 2005, vol. 46, no. 26, pp. 12577–12585.
  6. Esposito, E., Cortesi, R., and Nastruzzi, C., Biomaterials, 1996, vol. 17, no. 20, pp. 2009–2020.
  7. Arvanitoyannis, I., Psomiadou, E., Nakayama, A., et al., Food. Chem., 1997, vol. 60, no. 4, pp. 593–604.
  8. Hellio-Serughetti, D. and Djabourov, M., Langmuir, 2006, vol. 22, no. 20, pp. 8516–8122.
  9. Kurniawan, L., Zhang X.Q., and Qiao, G.G., Biomacromolecules, 2007, vol. 8, no. 9, pp. 2909–2915.
  10. Gerrard, J.A., Trends. Food. Sci. Technol., 2002, vol. 13, no. 12, pp. 391–399.
  11. Bigi, A., Cojazzi, G., Panzavolta, S., et al., Biomaterials, 2001, vol. 22, no. 8, pp. 763–768.
  12. Gerrard, J.A., Brown, P.K., and Faye, S.E., Food Chem., 2002, vol. 79, no. 3, pp. 343–349.
  13. Gerrard, J.A., Brown, P. K., and Faye, S.E., Food Chem., 2003, vol. 80, no. 1, pp. 35–43.
  14. Martucci, J.F., Ruseckaite, R.A., and Vazquez, A, Mater. Sci. Eng A. 2006, vol. 435–436, no. 4, pp. 681–686.
  15. Farris, S., Song, J.H., and Huang, Q.R., J. Agric. Food. Chem., 2010, vol. 58, no. 2, pp. 998–1003.
  16. Kuijpers, A.J., Engbers, G.H.M., and De Smedt, S.C., Macromolecules, 1990, vol. 32, no. 10, pp. 3325–3333.
  17. Van Wachem, P.B., Zeeman, R., and Dijkstra, P.J., et al., J. Biomed. Mater. Res., 1999, vol. 47, no. 2, pp. 270–277.
  18. Kolodziejska, I. and Piotrowska, B., Food Chem., 2007, vol. 103, no. 2, pp. 295–300.
  19. Sung, H.W., Huang, D.M., Chang, W.H., et al., J. Biomed. Mater. Res., 1999, vol. 46, no. 4, pp. 520–530.
  20. Boanini, E., Rubini, K., Panzavolta, S., et al., Acta Biomater., 2010, vol. 6, no. 2, pp. 383–388.
  21. Van-Dyke, M.E., Clarson, S.J., and Arshady, R., Silicone Biomaterials. In Introduction to Polymeric Biomaterials, Arshady, R., Eds., London: Citus Books, 2003.
  22. Zhulina, E., Singh, C., and Balazs, A.C., Macromolecules, 1996, vol. 29, no. 19, pp. 6338–6348.
  23. Madec, M.B., Smith, P.J., Malandraki, A., et al., J. Mater. Chem., 2010, vol. 20, no. 41, pp. 9155–9160.
  24. Xuan, Y., Peng, J., Cui, L., et al., Macromolecules, 2004, vol. 37, no. 19, pp. 7301–7307.
  25. Lin, Z.Q., Kim, D.H., Wu, X.D., et al., Adv. Mater., 2002, vol. 14, no. 19, pp. 1373–1376.
  26. Cavicchi, K.A., Berthiaume, K.J., and Russell, T.P., Polymer, 2005, vol. 46, no. 25, pp. 11635–11639.
  27. Knoll, A., Horvat, A., Lyakhova, K.S., et al., Phys. Rev. Lett., 2002, vol. 89, no. 3, pp. 035501, 1–4.
  28. Knoll, A., Magerle, R., and Krausch, G., J. Chem. Phys., 2004, vol. 120, no. 2, pp. 1105–1116.
  29. Wu, Z.W., Song, T., Jin, Y.Z., et al., Appl. Phys. Lett., 2011, vol. 99, no. 4, pp. 143306
  30. Xu, J., Li, T.D., Jiang, Q.W., et al., Colloid. Surface. B, 2013, vol. 103, pp. 375–380.
  31. Xu, J., Li, T.D., Tang, X.L., et al., Colloid. Surface. B, 2012, vol. 95, pp. 201–207.
  32. Jiang, Q.W., Xu, J., Li, T.D., et al., J. Macromol. Sci. B, 2014, vol. 53, no. 1, pp. 133–141.