Examples



mdbootstrap.com



 
Статья
2020

Effect of Substituents in Hydrolyzed Cephalosporins on Intramolecular O–H···N Bond


E. O. LevinaE. O. Levina, M. G. KhrenovaM. G. Khrenova, V. G. TsirelsonV. G. Tsirelson
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420050131
Abstract / Full Text

Model molecular systems structurally similar to the transition state of the limiting step of the hydrolysis of cephalosporin antibiotics by the L1 metallo-β-lactamase are studied. The series of fluorinated compounds show that the nature of substituents in thiazine and β-lactam rings have a great impact on the strength of the intramolecular O–H···N hydrogen bond that determines the catalytic parameters in real biological systems. The strengthening or weakening of the O–H···N bond is registered via a quantum topological analysis of the electron density, supplemented with various bonding descriptors’ study. The obtained data are confirmed by the analysis of the vibrational frequency shift relatively to the nonfluorinated compound for the O‒H stretching mode of the carboxylic group involved in the O–H···N bond formation. The absence of the monotonic dependence of the hydrogen bond strength on the donor-acceptor effects of substituents shows that considered bonding descriptors do not provide a complete understanding of the bonding mechanisms in the active center of L1 metallo-β-lactamase.

Author information
  • Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences, 119071, Moscow, RussiaE. O. Levina, M. G. Khrenova & V. G. Tsirelson
  • Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, RussiaE. O. Levina
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaM. G. Khrenova
  • Mendeleev University of Chemical Technology, 125047, Moscow, RussiaV. G. Tsirelson
References
  1. G. Sliwoski, S. Kothiwale, J. Meiler, and E. W. Lowe, Pharmacol. Rev. 66, 334 (2014). https://doi.org/10.1124/pr.112.007336
  2. S. Mandal, M. Moudgil, and S. K. Mandal, Eur. J. Pharmacol. 625, 90 (2009). https://doi.org/10.1016/j.ejphar.2009.06.065
  3. A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976). https://doi.org/10.1016/0022-2836(76)90311-9
  4. N. Mardirossian and M. Head-Gordon, Mol. Phys. 115, 2315 (2017). https://doi.org/10.1080/00268976.2017.1333644
  5. R. F. W. Bader, Atoms in Molecules. Quantum Theory (Clarendon, Oxford, 1994), p. 432.
  6. M. G. Khrenova and V. G. Tsirelson, Mendeleev Commun. 29 (5), 492 (2019). https://doi.org/10.1016/j.mencom.2019.09.004
  7. M. G. Khrenova, A. V. Tomilko, and V. G. Tsirelson, Mosc. Univ. Chem. Bull. 60, 106 (2019).
  8. R. F. W. Bader and H. Essén, J. Chem. Phys. 80, 1943 (1984). https://doi.org/10.1063/1.446956
  9. L. González et al., J. Chem. Phys. 109, 2685 (1998). https://doi.org/10.1063/1.476868
  10. S. J. Grabowski, T. L. Robinson, and J. Leszczynski, Chem. Phys. Lett. 386, 44 (2004). https://doi.org/10.1016/j.cplett.2004.01.013
  11. M. V. Vener, E. O. Levina, A. A. Astakhov, et al., Chem. Phys. Lett. 638, 233 (2015). https://doi.org/10.1016/j.cplett.2015.08.053
  12. E. Espinosa, I. Alkorta, J. Elguero, et al., J. Chem. Phys. 117, 5529 (2002). https://doi.org/10.1063/1.1501133
  13. D. Cremer, E. Kraka, T. S. Slee, et al., J. Am. Chem. Soc. 105, 5069 (1983). https://doi.org/10.1021/ja00353a036
  14. M. G. Khrenova and A. V. Nemukhin, J. Phys. Chem. B 122, 1378 (2018). https://doi.org/10.1021/acs.jpcb.7b10188
  15. M. W. Crowder, T. R. Walsh, L. Banovic, et al., Antimicrob. Agents Chemother. 42, 921 (1998). https://doi.org/10.1128/AAC.42.4.921
  16. A. Felici and G. Amicosante, Antimicrob. Agents Chemother. 39, 192 (1995). https://doi.org/10.1128/AAC.39.1.192
  17. M. G. Khrenova, A. V. Krivitskaya, and V. G. Tsirelson, New J. Chem. 43, 7329 (2019). https://doi.org/10.1039/C9NJ00254E
  18. A. A. Granovsky, Firefly, Version 8. http://classic.chem.msu.su/gran/firefly/index.html.
  19. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522
  20. S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
  21. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885
  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, New York, 2004).
  23. M. Rozenberg, A. Loewenschuss, and Y. Marcus, Phys. Chem. Chem. Phys. 2, 2699 (2000). https://doi.org/10.1039/B002216K
  24. T. Steiner, Angew. Chem., Int. Ed. Engl. 41, 48 (2002). https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
  25. M. Rozenberg, RSC Adv. 4, 26928 (2014). https://doi.org/10.1039/C4RA03889D
  26. A. V. Afonin, A. V. Vashchenko, and M. V. Sigalov, Org. Biomol. Chem 14, 11199 (2016). https://doi.org/10.1039/C6OB01604A
  27. R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A 110, 3349 (2006). https://doi.org/10.1021/jp060571z
  28. I. Mata, I. Alkorta, E. Espinosa, et al., Chem. Phys. Lett. 507, 185 (2011). https://doi.org/10.1016/j.cplett.2011.03.055