Статья
2019

Acceleration of Processes on Positive Electrode of Lithium–Oxygen Battery: Electrocatalyst or Redox Mediator?


O. V. Korchagin O. V. Korchagin , V. A. Bogdanovskaya V. A. Bogdanovskaya , O. V. Tripachev O. V. Tripachev , G. D. Sinenko G. D. Sinenko , V. V. Emets V. V. Emets
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519060107
Abstract / Full Text

The approaches to increasing the efficiency of lithium–oxygen battery (LOB), which are based on the use of PtCo/carbon nanotubes (CNT) catalyst and iodine-containing liquid-phase mediator, are compared. It is found that, when 1 M LiClO4/DMSO electrolyte is used, the 20PtCo/CNT catalyst provides an increase of the capacity of a Swagelok LOB model in the complete discharge to a voltage of 2 V as compared to the CNT-based LOB. During the cycling of LOB with each of the materials, the charging voltage increases to 4.5 V. This leads not only to an increase in the rate of electrochemical oxidation of lithium peroxide, but also to an acceleration of corrosion of the electrolyte and active material. In the presence of iodine compounds in the electrolyte, Li2O2 is oxidized by the chemical mechanism, which reduces the charging voltage. In the 0.05 M LiI + 1 M LiClO4/DMSO electrolyte, 85 successive cycles were obtained at a capacity of 500 mA h/gС in the LOB discharging stage and a final charging voltage of not more than 3.8 V. When scaling the LOB to the size of the positive electrode (5 × 5 cm2), the complete discharge capacity close to this characteristic of Swagelok model (as calculated for the geometric electrode surface area) was reached. An introduction of iodine-containing additive into the electrolyte enabled us to obtain up to 100 cycles at a capacity of 300 mA h/gC. The results of the work show that the use of iodine-based redox mediator is more effective from the viewpoint of stability of characteristics of LOB of this type as compared with the use of the platinum-containing catalyst.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    O. V. Korchagin, V. A. Bogdanovskaya, O. V. Tripachev & V. V. Emets

  • Department of Chemistry, Moscow State University, 119991, Moscow, Russia

    G. D. Sinenko

References
  1. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Lithium–oxygen (air) batteries (state-of-the-art and perspectives), Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1.
  2. Visco, S.J., Nimon, V., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Hendrickson, M., and Plichta, E., Lithium Air Batteries Based on Protected Lithium Electrodes, in The Lithium Air Battery: Fundamentals, Imanishi, N., Luntz, A.C., and Bruce, P., Eds., New York: Springer, 2014, p. 179.
  3. Chase, M.W., Jr., NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, 1998, Monogr. 9, p. 1510.
  4. Bogdanovskaya, V.A., Korchagin, O.V., Tarasevich, M.R., Andreev, V.N., Nizhnikovskii, E.A., Radina, M.V., Tripachev, O.V., and Emets, V.V., Mesoporous nanostructured materials for the positive electrode of a lithium–oxygen battery, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 373.
  5. Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., and Bruce P.G., The carbon electrode in nonaqueous Li–O2 cells, J. Am. Chem. Soc., 2013, vol. 135, p. 494.
  6. Nomura, A., Ito, K., and Kubo, Y., CNT sheet air electrode for the development of ultra-high cell capacity in lithium—air batteries, Scientific Reports, 2017, vol. 7, p. 45596.
  7. Tarasevich, M.R., Korchagin, O.V., and Tripachev, O.V., Comparative study of special features of the oxygen reaction (molecular oxygen ionization and evolution) in aqueous and nonaqueous electrolyte solutions (a review), Russ. J. Electrochem., 2018, vol. 54, p. 1.
  8. Lu, Y.-C., Xu, Z., Gasteiger, H.A., Chen, S., Hamad-Schifferli, K., and Shao-Horn, Y., Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries, J. Amer. Chem. Soc., 2010, vol. 132, p. 12170.
  9. Korchagin, O.V., Tarasevich, M.R., Tripachev, O.V., and Bogdanovskaya, V.A., Catalysis of oxygen reaction on positive electrode of a lithium–oxygen cell in the presence of metallic nanosystems, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 581.
  10. Tripachev, O.V., Korchagin, O.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Specific features of the oxygen reaction on catalytic systems in acetonitrile-based electrolytes, Russ. J. Electrochem., 2016, vol. 52, p. 456.
  11. Leng, L., Li, J., Zeng, X., Song, H., Shu, T., Wang, H., and Liao, S., Enhancing the cyclability of Li–O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst, J. Power Sources, 2017, vol. 337, p. 173.
  12. Korchagin, O.V., Bogdanovskaya, V.A., Tripachev, O.V., and Emets, V.V., Kinetics of oxygen reaction and discharge/charging overvoltages of Li–O2 battery with aprotic electrolytes, Electrochem. Commun., 2018, vol. 90, p. 43.
  13. Viswanathan, V., Nørskov, J.K., Speidel, A., Scheffler, R., Gowda, S., and Luntz, A.C., Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory, J. Phys. Chem. Lett., 2013, vol. 4, p. 556.
  14. Gittleson, F.S., Sekol, R.C., Doubek, G., Linardi, M., and Taylor, A.D., Catalyst and electrolyte synergy in Li–O2 batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 3230.
  15. Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P., Cycling Li–O2 batteries via LiOH formation and decomposition, Science, 2015, vol. 350, p. 530.
  16. Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, p. 723.
  17. Meini, S., Piana, M., Beyer, H., Schwammlein, J., and Gasteiger, H.A., Effect of carbon surface area on first discharge capacity of Li–O2 cathodes and cycle-life behavior in ether-based electrolytes, J. Electrochem. Soc., 2012, vol. 159, p. 2135.
  18. Soboleva, T., Zhao, X., Malek, K., Xie, Z., Navessin, T., and Holdcroft, S., On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers, Appl. Mater. Interfaces, 2010, vol. 2, p. 375.
  19. McCloskey, B.D. and Addison, D., A Viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries, ACS Catal., 2017, vol. 7, p. 772.
  20. Kwak, W.-J., Hirshberg, D., Sharon, D., Shin, H.-J., Afri, M., Park, J.-B., Garsuch, A., Chesneau, F.F., Frimer, A.A., Aurbach, D., and Sun, Y.-K., Understanding the behavior of Li–oxygen cells containing LiI, J. Mater. Chem. A, 2015, vol. 3, p. 8855.
  21. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules, J. Solid State Electrochem., 2011, vol. 15, p. 2119.
  22. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Investigation of electrochemical behavior of secondary products of capture of OH radicals by dimethyl sulfoxide molecules using laser photoemission, Moscow University Chemistry Bulletin, 2013, vol. 68, p. 273.
  23. Kwabi, D.G., Batcho, T.P., Amanchukwu, C.V., Ortiz-Vitoriano, N., Hammond, P., Thompson, C.V., and Shao-Horn, Y., Chemical instability of dimethyl sulfoxide in lithium—air batteries, J. Phys. Chem. Lett., 2014, vol. 5, p. 2850.
  24. Wong, R.A., Yang, C., Dutta, A., O, M., Hong, M., Thomas, M.L., Yamanaka, K., Ohta, T., Waki, K., and Byon, H.R., Critically examining the role of nanocatalysts in Li–O2 batteries: viability towards suppression of recharge overpotential, rechargeability and cyclability, ACS Energy Lett., 2018, vol. 3, p. 592.
  25. Mepsted, G.O. and Moore, J.M., Performance and Durability of Bipolar Plate Materials, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., Lamm, A., and Yokokawa, H., Eds., Wiley, 2010, pp. 1—8.
  26. Industrial Solvents Handbook, Flick, E.W., Ed., Westwood, New Jersey: Noyes Data Corporation, 1998.