Статья
2019

NiO/Porous Reduced Graphene Oxide as Active Hybrid Electrocatalyst for Oxygen Evolution Reaction


Babak Zareyy Babak Zareyy , Fereshteh Chekin Fereshteh Chekin , Shahla Fathi Shahla Fathi
Российский электрохимический журнал
https://doi.org/10.1134/S102319351903011X
Abstract / Full Text

At present, the graphene hybrid as electrode material demonstrates the efficient performance for oxygen evolution reaction (OER). OER influences some important renewable clean energy technologies such as water splitting. In this study, a highly active matrix based on NiO and porous reduced graphene oxide (NiO-prGO) nanocomposite was prepared by simple and efficient electrochemical routine and characterised, which presents good performance for OER. The superior electrochemical performance of prGO nanosheets might be attributed to their high surface area, which could efficiently accelerate rate of the whole electrochemical reaction and improve the catalytic activity for OER in alkaline solution. NiO-prGO modified carbon paste electrode (NiO-prGO/CPE) exhibits more negative onset potential and high current density in NaOH 0.1 M compared to NiO-reduced graphene oxide modified CPE (NiO-rGO/CPE), NiO-graphene oxide modified CPE (NiO-GO/CPE) and NiO modified CPE (NiO/CPE), which indicates pores can significantly enhance NiO loading and the OER performance. The electro-catalytic activity and stability of the catalysts were evaluated by linear sweep voltammetry and chronoamperometry, showing that the NiO on prGO was beneficial for both OER activity and stability. This report affords a hybrid electro-catalyst, which can be applied to energy conversion storage processes.

Author information
  • Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

    Babak Zareyy, Fereshteh Chekin & Shahla Fathi

References
  1. Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., and Strasser, P., Chem. Cat. Chem., 2010, vol. 2, p. 724.
  2. Walter, M.G., Warren, E.L., Mc Kone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S., Chem. Rev., 2010, vol. 110, p. 6446.
  3. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G., Chem. Rev., 2010, vol. 110, p. 6474.
  4. Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S., and Hashimoto, K., Nature Commun., 2013, vol. 4, p. 1.
  5. Chen, S., Duan, J., Jaronie C. M., and Qiao, S.Z., Angew. Chem. Int. Ed., 2013, vol. 52, p. 13567.
  6. Huynh, M.H.V. and Meyer, T.J., Chem. Rev., 2007, vol. 107, p. 5004.
  7. Betley, T.A., Wu, Q., Van Voorhis, T., and Nocera, D.G., Inorg. Chem., 2008, vol. 47, p. 1849.
  8. Liao, M., Zeng, G., Luo, T., Jin, Zh., Wang, Y., Kou, X., and Xiao, D., Electrochim. Acta, 2016, vol. 194, p. 59.
  9. Lee, Y., Suntivich, J., May, K.J., Perry, E.E., and Shao-Horn, Y., J. Phys. Chem. Lett., 2012, vol. 3, p. 399.
  10. Yagi, M., Tomita, E., Sakita, S., Kuwabara, T., and Nagai, K., J. Phys. Chem. B, 2005, vol. 109, p. 21489.
  11. Yeo, B.S. and Bell, A.T., J. Am. Chem. Soc., 2011, vol. 133, p. 5587.
  12. Liu, Y.C., Koza, J.A., and Switzer, J.A., Electrochim. Acta, 2014, vol. 140, p. 359.
  13. Fayette, M., Nelson, A., and Robinson, R.D., J. Mater. Chem. A, 2015, vol. 3, p. 4274.
  14. Hutchings, G.S., Zhang, Y., Li, J., Yonemoto, B.T., Zhou, X.G., Zhu, K.K., and Jiao, F., J. Am. Chem. Soc., 2015, vol. 137, p. 4223.
  15. Li, L.L., Tian, T., Jiang, J., and Ai, L.H., J. Power Sources, 2015, vol. 294, p. 103.
  16. Shi, N., Cheng, W., Zhou, H., Fan, T.X., and Niederberger, M., Chem. Commun., 2015, vol. 51, p. 1338.
  17. Stern, L.A. and Hu, X.L., Faraday Discuss., 2014, vol. 176, p. 363.
  18. Cibrev, D., Jankulovska, M., Lana-Yillarreal, T., and Gómez, R., Int. J. Hydrogen Energy, 2013, vol. 38, p. 2746.
  19. Chekin, F., Singh, S.K., Vasilescu, A., Dhavale, V.M., Kurungot, S., Boukherroub, R., and Szunerits, S., ACS Sens., 2016, vol. 1, p. 1462.
  20. Han, S., Wu, D., Li, S., Zhang, F., and Feng, X., Adv. Mater., 2014, vol. 26, p. 849.
  21. Jiang, L. and Fan, Z., Nanoscale, 2014, vol. 6, p. 1922.
  22. Chen, D., Feng, H., and Li, J., Chem. Rev., 2012, vol. 112, p. 6027.
  23. He, L., Wang, Q., Mandler, D., Li, M., Boukherroub, R., and Szunerits, S., Biosens. Bioelectron., 2016, vol. 75, p. 389.
  24. Wu, S., He, Q., Tan, C., Wang, Y., and Zhang, H., Small, 2013, vol. 9, p. 1160.
  25. Ambrosi, A., Chua, C.K., Latiff, N.M., Loo, A.H., Wong, C.H.A., Eng, A.Y.S., Bonanni, A., and Pumera, M., Chem. Soc. Rev., 2016, vol. 45, p. 2458.
  26. Joshi, R.K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., and Nishina, Y., Appl. Mater. Today, 2015, vol. 1, p. 1.
  27. Seah, T.H., Poh, H.L., Chua, C.K., Sofer, Z., and Pumera, M., Electroanalysis, 2014, vol. 26, p. 62.
  28. Antink, W.H., Choi, Y., Seong, K.D., Kim, J.M., and Piao, Y., Adv. Mater. Interfaces, 2018, vol. 5, p. 1701212.
  29. Yeon, S.H., Yoon, H., Lee, S.H., Kim, J.E., Lim, S., Shin, K.H., Park, H.S., Chang-Su Jin, Ch.S., Ann, W., Cheong, H.W., Choi, Y., and Yu, H.R., Carbon, 2015, vol. 91, p. 241.
  30. Chekin, F., Teodorescu, P., Coffinier, Y., Pan, G.H., Barras, A., Boukherroub, R., and Szunerits, S., Biosens. Bioelectron., 2016, vol. 85, p. 807.
  31. Pi, S.J., Xia, N., Lv, X.P., Zhao, M.M., Yuan, B.Q., and Pang, H., Sens. Actuators B: Chem., 2014, vol. 190, p. 809.
  32. Chekin, P., Pahermansouri, H., and Besharat, M.R., J. Solid State Electrochem., 2014, vol. 18, p. 747.
  33. Bagheri, S., Chekin, R., and Abd Hamid, Sh.B., J. Chin. Chem. Soc., 2014, vol. 61, p. 702.
  34. Zhang, J.H., Peng, J.Y., Zhu, P., Piu, Z.P., Pi, Q.Y., Chen, Sh.Zh., and Xu, Ch.W., Electrochim. Acta, 2016, vol. 196, p. 661.
  35. Zhao, J., Piu, Y., Quan, X., Chen, Sh., Zhao, H., and Yu, H., Electrochim. Acta, 2016, vol. 204, p. 169.
  36. Pi, X., Han, G.Q., Piu, Y.R., Dong, B., Shang, X., Hu,W.H., Chai, Y.M., Piu, Y.Q., and Piu, Ch.G., Electrochim. Acta, 2016, vol. 205, p. 77.
  37. Fang, Y., Pi, X., Hu, Y., Pi, R., Pin, X., Pian, M., An, X., Fu, Y., Jin, J., and Ma, J., J. Power Sources, 2015, vol. 300, p. 285.
  38. Pi, Zh., Yu, X.Y., and Paik, U., J. Power Sources, 2016, vol. 310, p. 41.
  39. Zhang, P., Pi, H., Pi, K., Pi, P., Wei, J., Feng, P., and Fu, Q., J. Alloys Compd., 2016, vol. 680, p. 146.
  40. Song, M.Y., Yang, D.S., Singh, K.P., Yuan, J., and Yu, J.S., Appl. Catal. B: Environ., 2016, vol. 191, p. 202.