Electrophoretically Deposited Bismuth Iron Oxide Nanoparticles Film for Supercapacitor Application

 Ankur Soam Ankur Soam , Rahul Kumar Rahul Kumar , Mamraj Singh Mamraj Singh
Российский электрохимический журнал
Abstract / Full Text

Bismuth iron oxide (BFO) nanoparticles film prepared by electrophoretic deposition (EPD) process has been explored for supercapacitor application. EPD process has several benefits compared to other techniques such as vacuum free, controllability over nanofilms and suitable method to prepare electrodes. The structure of the as-deposited film was characterized using X-ray diffraction and high-resolution transmission electron microscopy. The morphology of the as-deposited BFO nanoparticles film was examined with scanning electron microscopy. Cyclic voltammetry and constant current charging/discharging methods were employed to study the electrochemical properties of BFO nanoparticles films. The BFO nanoparticles film exhibited a specific capacitance of 7.4 mF/cm2 determined at a scan rate of 10 mV/s.

Author information
  • Department of Mechanical Engineering, Siksha O Anusandhan, Deemed to be University, 751030, Bhubaneswar, India

    Ankur Soam

  • Centre for Energy Studies, Indian Institute of Technology Delhi, 110016, Delhi, India

    Rahul Kumar

  • Department of Physics, University of Rajasthan, 302004, Jaipur, India

    Mamraj Singh

  1. Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 2000, vol. 45, p. 2483.
  2. Tie, S.F. and Wei, C., A review of energy sources and energy management system in electric vehicles, Renewable Sustainable Energy Rev., 2013, vol. 20, p. 82.
  3. Hota, M.K., Jiang, Q., Mashraei, Y., Salama, K.N., and Alshareef, H.N., Fractal electrochemical microsupercapacitors, Adv. Electron., 2017, vol. 3, p. 1700185.
  4. Soam, A., Kumar, R., Mahender, C., Singh, M., Thatoi, D., and Dusane, R.O., Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material, J. Alloys Compd., 2020, vol. 813, p. 152145.
  5. Kumar, R., Soam, A., Dusane, R.O., and Bhargava, P., Sucrose derived carbon coated silicon nanowires for supercapacitor application, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 1947.
  6. Lokhande, C.D., Dubal, D.P., and Joo, O., Metal oxide thin film based supercapacitors, Curr. Appl. Phys., 2017, vol. 11, p. 255.
  7. Liu, Y., Hu, Z., Xu, K., Zheng, X., and Gao, Q., Surface modification and performance of activated carbon electrode material, Acta Phys.-Chim. Sin., 2008, vol. 24, p. 1143.
  8. Yusin, S.I. and Karunina, O.V., Synthesis and characterization of supercapacitor electrode materials based on carbon fiber materials and metal oxyhydroxides, Inorg. Mater.: Appl. Res., 2018, vol. 9, p. 954.
  9. Yang, J., Liu, Y., Chen, X., Hu, Z., and Zhao, G., Carbon electrode material with high densities of energy and power, Acta Phys.-Chim. Sin., 2008, vol. 24, p. 13.
  10. Liu, W., Lu, C., Wang, X., Tay, R.Y., and Tay, B.K., High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film, ACS Nano, 2015, vol. 9, p. 1528.
  11. Soam, A., Parida, K., Kumar, R., Kavle, P., and Dusane, R., Silicon–MnO2 core–shell nanowires as electrodes for micro-supercapacitor application, Ceram. Int., 2019, vol. 45, p. 18914.
  12. Kumar, R., Singh, B.K., Soam, A., Parida, S., and Bhargava, P., In-situ carbon coated manganese oxide nanorodes (ISCC-MnO2NRs) as an electrode material for supercapacitors, Diamond Carbon Relat. Mater., 2019, vol. 94, p. 110.
  13. Ghanashyam, G. and Jeong, H.K., Thermally reduced graphite oxide-titanium dioxide composites for supercapacitors, Chem. Phys. Lett., 2018, vol. 706, p. 421.
  14. Khomenko, V., Frackowiak, E., and Be, F., Performance of manganese oxide CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 2005, vol. 152, p. 229.
  15. Sarkar, A., Singh, A.K., Sarkar, D., Khan, G.G., and Mandal, K., Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion, ACS Sust. Chem. Eng., 2015, vol. 3, p. 2254.
  16. Lokhande, C., Gujar, T., Mane, R.S., and Han, S.H., Electrochemical supercapacitor application of pervoskite thin films, Electrochem. Commun., 2007, vol. 9, p. 1805.
  17. Jadhav, V.V., Zate, M.K., Liu, S., Naushad, M., Mane, R.S., Hui, K.N., and Han, S.H., Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application, Appl. Nanosci., 2016, vol. 6, p. 511.
  18. Nayak, S., Soam, A., Nanda, J., Mahender, C., Singh, M., Mohapatra, D., and Kumar, R., Sol-gel synthesized BiFeO3-graphene nanocomposite as efficient electrode for supercapacitor application, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 9361.
  19. Di, L., Yang, H., Xian, T., and Chen, X., Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials, 2017, vol. 10, p. 1118.
  20. Ponzoni, C., Rosa, R., Cannio, M., Buscaglia, V., Finocchio, E., Nanni, P., and Leonelli, C., Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions, J. Europ. Ceram. Soc., 2013, vol. 33, p. 1325.
  21. Salimkhani, H., Palmeh, P., Khiabani, A. B., Hashemi, E., Matinpour, S., Salimkhani, H., and Shahedi, M., Electrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite, Surf. Interfaces, 2016, vol. 5, p. 1.
  22. Wu, Y., Wan, J., Huang, C., Weng, Y., Zhao, S., Liu, J., and Wang, G., Strong magnetoelectric coupling in multiferroic BiFeO3–Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition, Appl. Phys. Lett., 2008, vol. 93, p. 192915.
  23. Zhang, N., Chen, D., Niu, F., Wang, S., Qin, L., and Huang, Y., Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight, Sci. Rep., 2016, vol. 6, p. 26467.
  24. Pell, W.G. and Conway, B.E., Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, J. Power Sources, 2001, vol. 96, p. 57.
  25. Pell, W.G., Conway, B.E., and Marincic, N., Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal. Chem., 2000, vol. 491, p. 9.
  26. Levie, R.D., On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta, 1963, vol. 8, p. 751.
  27. Sarma, B., Jurovitzki, A.L., Smith, Y.R., Mohanty, S.K., and Misra, M., Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode, ACS Appl. Mater. Interface, 2013, vol. 5, p. 1688.