Voltammetric and Docking Investigation of the Binding Interaction between (E)-1-[(2-Phenoxyphenylimino)methyl]naphthalen-2-ol and Calf Thymus DNA

 Ender Biçer Ender Biçer , Temban Acha Billy Temban Acha Billy , Mustafa Macit Mustafa Macit
Российский электрохимический журнал
Abstract / Full Text

In vitro interaction between (E)-1-[(2-phenoxyphenylimino)methyl]naphthalen-2-ol (2-PPMN) and calf thymus DNA (ct-DNA) at physiological pH was investigated by means of square-wave (SW) voltammetry and computational docking techniques. SW voltammetry study for 2-PPMN at pH 7.40 showed a cathodic peak at −1.520 V. By adding of ct-DNA, the cathodic current of 2-PPMN decreased due to intermolecular interaction. The effect of temperature on this interaction was also studied using voltammetric studies. The binding constants were determined from voltammetric data. According to van’t Hoff equation, ΔH and ΔS values were calculated as 124.68 kJ mol–1 and 526.16 J mol–1 K–1, respectively. Thermodynamic binding studies of 2-PPMN with ct-DNA suggested that hydrophobic forces played a main role and entropy favoured. The computational docking results revealed that 2-PPMN bound to the minor groove of ct-DNA and this interaction had a binding energy of −7.4 kcal mol–1.

Author information
  • Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Atakum-Samsun, Turkey

    Ender Biçer, Temban Acha Billy & Mustafa Macit

  1. Karthik, C.S., Mallesha, L., Santhosh, M.V., Nagashree, S., and Mallu, P., Synthesis, characterization, antimicrobial activity, and optical properties of Schiff bases derived from 4-(aminomethyl) piperidine, Indian J. Adv. Chem. Sci. SI2, 2016, vol. 4, p. 206.
  2. Munawar, K.S., Haroon, S.M., Hussain, S.A., and Raza, H., Schiff bases: multipurpose pharmacophores with extensive biological applications, J. Basic Appl. Sci., 2018, vol. 14, p. 217. https://doi.org/10.6000/1927-5129.2018.14.34
  3. Murtaza, S., Akhtar, M.S., Kanwal, F., Abbas, A., Ashiq, S., and Shamim, S., Synthesis and biological evaluation of Schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent, J. Saudi Chem. Soc., 2017, vol. 21, p. S359. https://doi.org/10.1016/j.jscs.2014.04.003
  4. Santhosh, M.V., NagendraPrasad, H.S., Nagashree, S., Manukumar, H.M., Mallesha L., and Mallu, P., Synthesis and characterization of Schiff base analogues of fluoroaniline and their antibiocidal activity against MRSA, Curr. Chem. Lett., 2019, vol. 8, p. 169. https://doi.org/10.5267/j.ccl.2019.4.005
  5. Das, R., Saxena, A., Saxena, S., and Khan, G., Electrochemical study of some Schiff base by cyclic voltammetry and its metal complex—DNA interaction study by uv-visible spectroscopy, J. Adv. Electrochem., 2015, vol. 1, p. 19.
  6. Maidul Islam, Md., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., and Mukhopadhyay, S., Binding of DNA with rhodamine b: spectroscopic and molecular modeling studies, Dyes Pigments, 2013, vol. 99, p. 412. https://doi.org/10.1016/j.dyepig.2013.05.028
  7. Khan, S., Malla, A.M., Zafar, A., and Naseem, I., Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: in vitro DNA/Cu(II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action, PLoS One, 2017, vol. 12, p. e0181783. https://doi.org/10.1371/journal.pone.0181783
  8. Turel, I. and Kljun, J., Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for anticancer research, Curr. Top. Med. Chem., 2011, vol. 11, p. 2661. https://doi.org/10.2174/156802611798040787
  9. Hurley, L.H. and Boyd, F.L., DNA as a target for drug action, Trends Pharmacol. Sci., 1988, vol. 9, p. 402. https://doi.org/10.1016/0165-6147(88)90067-3
  10. Xu, L., Hu, Y.-X., Li, Y.-C., Zhang, L., Ai, H.-X., Liu, Y.-F., and Liu, H.-S., In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques, J. Mol. Struct., 2018, vol. 1154, p. 9. https://doi.org/10.1016/j.molstruc.2017.10.029
  11. Ariyaeifar, M., Rudbari, H.A., Sahihi, M., Kazemi, Z., Kajani, A.A., Zali-Boeini, H., Kordestani, N., Bruno, G., and Gharaghani, S., Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study, J. Mol. Struct., 2018, vol. 1161, p. 497. https://doi.org/10.1016/j.molstruc.2018.02.042
  12. Jamshidvand, A., Sahihi, M., Mirkhani, V., Mogha-dam, M., Mohammadpoor-Baltork, I., Tangestaninejad, S., Rudbari, H.A., Kargar, H., Keshavarzi, R., and Gharaghani, S., Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: influence of substitutions on DNA-binding, J. Mol. Liq., 2018, vol. 253, p. 61. https://doi.org/10.1016/j.molliq.2018.01.029
  13. Zhang, Y., Wang, X.M., and Ding, L., Interaction between tryptophan-vanillin Schiff base and herring sperm DNA, J. Serb. Chem. Soc., 2010, vol. 75, p. 1191. https://doi.org/10.2298/JSC100128107Z1191
  14. Shahabadi, N., Kashanian, S., and Darabi, F., In vitro study of DNA interaction with a water-soluble dinitrogen Schiff base, DNA Cell Biol., 2009, vol. 28, p. 589. https://doi.org/10.1089/dna.2009.0881
  15. Helal, M.H., Al-Mudaris, Z.A., Al-Douh, M.H., Osman, H., Wahab, H.A., AlNajjar, B.O., Abdallah, H.H., and Majid, A.M.S.A., Diaminobenzene Schiff base, a novel class of DNA minor groove binder, Int. J. Oncol., 2012, vol. 41, p. 504. https://doi.org/10.3892/ijo.2012.1491
  16. Nayab, P.S., Akrema, Ansari, I.A., Shahid, M., and Rahisuddin, New phthalimide-appended Schiff bases: studies of DNA binding, molecular docking and antioxidant activities, Luminescence, 2016, vol. 32, p. 829. https://doi.org/10.1002/bio.3259
  17. Arshad, N., Ahmad, M., Ashraf, M.Z., and Nadeem, H., Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone, J. Photochem. Photobiol. B, 2014, vol. 138, p. 331. https://doi.org/10.1016/j.jphotobiol.2014.06.014
  18. Pehlivan, V., Sülfametizolden türeyen bazı Schiff bazlarının DNA ile etkileşimlerinin voltametrik ve spektroskopik incelenmesi, PhD Thesis, Ondokuz Mayıs University, 2019.
  19. Pehlivan, V., Biçer, E., Genç Bekiroğlu, Y., and Dege, N., Electrochemical and spectroscopic studies on the interaction modes of calf thymus DNA with antibacterial Schiff bases obtained from substituted salicylaldehydes and sulfamethizole, Int. J. Electrochem. Sci., 2018, vol. 13, p. 10733. https://doi.org/10.20964/2018.11.40
  20. Biçer, E., Pehlivan, V., and Genç Bekiroğlu, Y., Synthesis, characterization, in vitro antifungal activities and calf thymus DNA interactions of two different hydroxy benzaldehyde derivative Schiff bases from sulfamethizole: electrochemical, spectroscopic and biological study, Russ. J. Electrochem., 2019, vol. 55, p. 419. https://doi.org/10.1134/S1023193519050045
  21. Macit, M. and Alpaslan, G., Crystal structure, spectroscopic properties and DFT studies on copper(II) complex of bis{(E)-1-[(2-phenoxyphenylimino)methyl]naphthalene-2-ol}chloroform solvate, J. Mol. Struct., 2014, vol. 1072, p. 277. https://doi.org/10.1016/j.molstruc.2014.05.025
  22. Temel, E., Ağar, E., and Büyükgüngör, O., 1-[(E)-(2-Phenoxyanilino)methylene]-naphthalen-2(1H)-one, Acta Crystallogr. E, 2010, vol. 66, p. o1131. https://doi.org/10.1107/S1600536810013851
  23. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.
  24. Frisch, A., Dennington, R.D., Keith, T.A., Milliam, J., Nielsen, A.B., Holder, A.J., and Hiscocks, J., GaussView Reference, Version 4.0., Pittsburgh: Gaussian Inc., 2007.
  25. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, vol. 25, p. 1605. https://doi.org/10.1002/jcc.20084
  26. Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., and Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput., 2015, vol. 11, p. 3696. https://doi.org/10.1021/acs.jctc.5b00255
  27. Shapovalov, M.V. and Dunbrack, R.L., A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions, Structure, 2011, vol. 19, p. 844. https://doi.org/10.1016/j.str.2011.03.019
  28. Trott, O. and Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 2010, vol. 31, p. 455. https://doi.org/10.1002/jcc.21334
  29. Moghadam, N.H., Salehzadeh, S., and Shahabadi, N., Spectroscopic and molecular docking studies on the interaction of antiviral drug nevirapine with calf thymus DNA, Nucleosides, Nucleotides Nucleic Acids, 2017, vol. 36, p. 553. https://doi.org/10.1080/15257770.2017.1346800
  30. Ghoneim, M.M., Mabrouk, E.M., Hassanein, A.M., El-Attar, M.A., and Hesham, E.A., Voltammetric and potentiometric studies of some sulpha drug-Schiff base compounds and their metal complexes, Cent. Eur. J. Chem., 2007, vol. 5, p. 898. https://doi.org/10.2478/s11532-007-0035-7
  31. Zhang, X., Li, M., Cui, Y., Zhao, J., Cui, Z., Li, Q., and Qu, K., Electrochemical behavior of calcein and the interaction between calcein and DNA, Electroanalysis, 2012, vol. 24, p. 1878. https://doi.org/10.1002/elan.201200192
  32. Radulović, V., Aleksić, M.M., and Kapetanović, V., An electrochemical study of the adsorptive behaviour of varenicline and its interaction with DNA, J. Serb. Chem. Soc., 2012, vol. 77, p. 1409. https://doi.org/10.2298/JSC120420073R
  33. Lamani, S.D., Teradale, A.B., Unki, S.N., and Nandibewoor, S.T., Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes modified glassy carbon electrode, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 304.
  34. Shah, A., Khan, A.M., Qureshi, R., Ansari, F.L., Nazar, M.F., and Shah, S.S., Redox behavior of anticancer chalcone on a glassy carbon electrode and evaluation of its interaction parameters with DNA, Int. J. Mol. Sci., 2008, vol. 9, p. 1424. https://doi.org/10.3390/ijms9081424
  35. Hajian, R. and Tan, G.H., Spectrophotometric and voltammetric studies on the interaction of 7-ethyl-10-hydroxycamptothecin (SN-38) as the metabolized compound of CPT-11 with ds-DNA, Asian J. Chem., 2013, vol. 25, p. 436. https://doi.org/10.14233/ajchem.2013.13147
  36. Mallappa, M., Gowda, B.G., and Mahesh, R.T., Mechanism of interaction of antibacterial drug moxifloxacin with herring sperm DNA: electrochemical and spectroscopic studies, Pharma Chem., 2014, vol. 6, p. 398.
  37. Feng, Q., Li, N.-Q., and Jiang, Y.-Y., Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Anal. Chim. Acta, 1997, vol. 344, p. 97. https://doi.org/10.1016/S0003-2670(97)00008-1
  38. Jalali, F. and Dorraji, P.S., Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA, J. Pharm. Biomed. Anal., 2012, vol. 70, p. 598. https://doi.org/10.1016/j.jpba.2012.06.005
  39. Deepa, R.R., Arulraj, A.A.D., Mideen, A.K.A.S., Gandhidasan, R.R., and Vasantha, V.S.V.S., Evaluation of antioxidant property of quinones and calculation of their binding constant values with DNA by Electrochemical Technique, Pharma Chem., 2018, vol. 10, p. 69.
  40. Rambabu, A., Kumar, M.P., Ganji, N., Daravath, S., and Shivaraj, DNA binding and cleavage, cytotoxicity and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-((E)-(4-(trifluoromethoxy)phenylimino)methyl)naphthalen-2-ol Schiff base, J. Biomol. Struct. Dyn., 2020, vol. 38, no. 1, p. 307. https://doi.org/10.1080/07391102.2019.1571945
  41. Tao, M., Zhang, G., Xiong, C., and Pan, J., Characterization of the interaction between resmethrin and calf thymus DNA in vitro, New J. Chem., 2015, vol. 39, p. 3665. https://doi.org/10.1039/C4NJ02321H
  42. Zhang, G., Wang, L., Zhou, X., Li, Y., and Gong, D., Binding characteristics of sodium saccharin with calf thymus DNA in vitro, J. Agr. Food Chem., 2014, vol. 62, p. 991. https://doi.org/10.1021/jf405085g
  43. Sadeghi, M., Bayat, M., Cheraghi, S., Yari, K., Heydari, R., Dehdashtian, S., and Shamsipur, M., Binding studies of the anti-retroviral drug, efavirenz to calf thymus DNA using spectroscopic and voltammetric techniques, Luminescence, 2016, vol. 31, p. 108. https://doi.org/10.1002/bio.2931
  44. Shen, H.-Y., Shao, X.-L., Xu, H., Li, J., and Pan, S.-D., In vitro study of DNA interaction with trichlorobenzenes by spectroscopic and voltammetric techniques, Int. J. Electrochem. Sci., 2011, vol. 6, p. 532.
  45. Lin, J., Gao, C., and Liu, R., Interaction mechanism of Trp−Arg dipeptide with calf thymus DNA, J. Fluoresc., 2013, vol. 23, p. 921. https://doi.org/10.1007/s10895-013-1217-7
  46. McKnight, R.E., Reisenauer, E., Pintado, M.V., Polasani, S.R., and Dixon, D.W., Substituent effect on the preferred DNA binding mode and affinity of a homologous series of naphthalene diimides, Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 4288. https://doi.org/10.1016/j.bmcl.2011.05.069
  47. Asadi, Z. and Nasrollahi, N., The effect of metal and substituent on DNA binding, cleavage activity, and cytotoxicity of new synthesized Schiff base ligands and Zn(II)complex, J. Mol. Struct., 2017, vol. 1147, p. 582. https://doi.org/10.1016/j.molstruc.2017.06.137