Статья
2018

Solid-Contact Ion-Selective Electrodes with Copper Hexacyanoferrate in the Transducer Layer


V. V. Timofeev V. V. Timofeev , M. B. Levin M. B. Levin , A. A. Starikova A. A. Starikova , M. A. Trofimov M. A. Trofimov , S. M. Korneev S. M. Korneev , K. N. Mikhelson K. N. Mikhelson
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518040080
Abstract / Full Text

The possibility of using mixed Fe2+/Fe3+ copper hexacyanoferrate (CuHCF) as the material for the transducer layer of solid-contact ion-selective electrodes (SC-ISEs) with plasticized polyvinylchloride membranes is studied. The study is performed for K+-SC-ISEs and water-hardness SC-ISEs. It is shown that CuHCF combines the ion-exchange and redox properties and, hence, in principle, should be suitable for SC-ISEs. However, the reproducibility of SC-ISE potentials from one electrode to another and their stability in time are far below those of conventional ISEs with internal aqueous solution. The potentials of individual SC-ISEs can be brought closer to one another by their polarization using a potentiostat or by their short-circuiting to a saturated silver-chloride reference electrode.

Author information
  • Institute of Chemistry, St. Petersburg State University, 26 Universitetskij pr. Staryi Petergof, St. Petersburg, 198504, Russia

    V. V. Timofeev, M. B. Levin, A. A. Starikova, M. A. Trofimov & K. N. Mikhelson

  • Institute of Chemistry, Osnabrűck University, Osnabrück, Germany

    S. M. Korneev

References
  1. Bobacka, J., Ivaska, A., and Lewenstam, A., Potentiometric Ion Sensors, Chem. Rev., 2008, vol. 10, p. 329.
  2. Mikhelson, K.N., Ion-selective Electrodes (Lecture Notes in Chemistry, Vol. 81), Heidelberg: Springer, 2013.
  3. Lewenstam, A., Routines and challenges in clinical application of electrochemical ion-sensors, Electroanalysis, 2014, vol. 26, p. 1171.
  4. Cattrall, R.W. and Freiser, H., Coated wire ion selective electrodes, Anal. Chem., 1971, vol. 43, p. 1905.
  5. Beliustin, A.A., Pisarevsky, A.M., Lepnev, G.P., Sergeev, A.S., and Shultz, M.M., Glass electrodes: a new generation, Sens. Actuators B, 1992, vol. 10, p. 61.
  6. Vlasov, Yu.G., Ermolenko, Yu.E., Kolodnikov, V.V., Ipatov, A.V., and Al-Marok, S., A mercury sensor for flow- and batch-injection analyses, Sens. Actuators B, 1995, vols. 24–25, p. 317.
  7. Vlasov, Yu.G. and Bychkov, E.A., Ion-selective chalcogenide glass electrodes, Ion-Sel. Electrode Rev., 1987, vol. 9, p. 5.
  8. Grekovich, A.L., Mikhelson, K.N., Didina, S.E., Garbuzova, N.V., and Materova, E.A., Solvent-polymeric solid-contact electrodes selective to chloride, bromide and thiocyanate ions, Ionnyi Obmen Ionometriya, 1982, vol. 3, p. 130.
  9. Stefanova, O.K., Alagova, Z.S., Rozhdestvenskaya, N.V., Membrane ion-selective electrode without liquid filling, Zavod. Lab., 1988, vol. 53, p. 694.
  10. Samsonova, E.N., Lutov, V.M., and Mikhelson, K.N., Solid-contact ionophore-based electrode for determination of pH in acidic media, J. Solid State Electrochem., 2009, vol. 13, p. 69.
  11. Khripoun, G.A., Volkova, E.A., Liseenkov, A.V., and Mikhelson, K.N., Nitrate-selective solid-contact electrodes with poly(3-octylthiophene) and poly(aniline) as ion-to-electron transducers buffered with electronion-exchange resin, Electroanalysis, 2006, vol. 18, p. 1322.
  12. Michalska, A., All-solid-state ion selective and allsolid-state reference electrodes, Electroanalysis, 2012, vol. 24, p. 1253.
  13. Ivanova, N.M., Levin, M.B., and Mikhelson, K.N., Problems and prospects of solid contact ion-selective electrodes with ionophore-based membranes, Russ. Chem. Bull., 2012, vol. 61, p. 926.
  14. Ivanova, N.M., Podeshvo, I.V., Goikhman, M.Ya., Yakimanskii, A.V., and Mikhelson, K.N., Potassiumselective solid contact electrodes with poly(amidoacid) Cu(I) complex, electron-ion exchanging resin and different sorts of carbon black in the transducer layer, Sens. Actuators B, 2013, vol. 186, p. 589.
  15. Jaworska, E., Michalska, A., and Maksymiuk, K., Polypyrrole nanospheres—electrochemical properties and application as a solid contact in ion-selective electrodes, Electroanalysis, 2017, vol. 29, p. 123.
  16. Karyakin, A.A., Prussian Blue and its analogues: electrochemistry and analytical applications, Electroanalysis, 2001, vol. 13, p. 813.
  17. Gao, Z., Zhou, X., Wang, G., Li, P., and Zhao, Z., Potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate film-modified electrode, Anal. Chim. Acta, 1991, vol. 244, p. 39.
  18. Engel, D. and Grabner, E.W., Copper hexacyanoferrate-modified glassy carbon: A novel type of potassium-selective electrode, Ber. Bunsen-Ges., 1985, vol. 89, p. 982.
  19. Levin, M.B., Khripoun, G.A., Korneev, S.M., and Mikhelson, K.N., Water hardness electrodes with ionophores containing oxy- and ester groups, Russ. J. Electrochem., 2018, vol. 54, p. 391.
  20. Bobacka, J., Potential stability of all-solid-state ionselective electrodes using conducting polymers as ionto-electron transducers, Anal. Chem., 1999, vol. 71, p. 4932.
  21. Fibbioli, M., Morf, W.E., Badertscher, M., de Rooij, N.F., and Pretsch, E., Potential drifts of solid-contacted ionselective electrodes due to zero-current ion fluxes through the sensor membrane, Electroanalysis, 2000, vol. 12, p. 1286.
  22. Harrison. J.D. and Li, X., Measurement of concentration profiles inside a nitrite ion selective electrode membrane, Anal. Chem., 1991, vol. 63, p. 2168.
  23. Li, Z., Li, X., Rothmaier, M., and Harrison, J.D., Comparison of numerical modeling of water uptake in poly(vinyl chloride)-based ion-selective membranes with experiment, Anal. Chem., 1996, vol. 67, p. 1726.
  24. Lindfors, T., Höfler, L., Jagerszki, G., and Gyurcsanyi, R.E., Hyphenated FT-IR-attenuated total reflection and electrochemical impedance spectroscopy technique to study the water uptake and potential stability of polymeric solid-contact ion-selective electrodes, Anal. Chem., 2011, vol. 83, p. 4902.
  25. Sundfors, F., Höfler, L., Gyurcsanyi R.E., and Lindfors, T., Influence of poly(3-octylthiophene) on the water transport through methacrylic-acrylic based polymer membranes, Electroanalysis, 2011, vol. 23, p. 1769.
  26. De Marco, R., Veder, J.P., Clarke, G., Nelson, A., Prince, K., Pretsch, E., and Bakker, E., Evidence of a water layer in solid-contact polymeric ion sensors, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 73.
  27. Vanamo, U. and Bobacka, J., Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer, Electrochim. Acta, 2014, vol. 122, p. 316.
  28. Vanamo, U. and Bobacka, J., Instrument-free control of the standard potential of potentiometric solid-contact ion-selective electrodes by short-circuiting with a conventional reference electrode, Anal. Chem., 2014, vol. 86, p. 10540.