Anodic Voltammetric Determination of an Atypical Antipsychotic Drug Amisulphide in Pharmaceutical Dosage Forms Using Electrochemical fsDNA Biosensor

Mustafa Cesme Mustafa Cesme , Duygu Polat Duygu Polat , Pelin Senel Pelin Senel , Aysegul Golcu Aysegul Golcu
Российский электрохимический журнал
Abstract / Full Text

In this study, a new biosensor for amisulpride (ASP) determination is defined. The interaction between ASP and fish sperm double-stranded DNA (FSdsDNA) was examined by differential pulse voltammetry (DPV) method utilizing FSdsDNA modified pencil graphite electrode (PGE). Sensitive and reliable ASP determination and detection was performed in pH 4.80 acetate buffer (20% ethanol) before and after the interaction of ASP and FSdsDNA, acting by the change in guanine oxidation signals from the electro-active bases of FSdsDNA. In addition, analytical method validity tests were examined in this study. This modified electrode have used in 1–10 μg/mL determination interval for the quantitative determination of ASP in pharmaceutical forms and the limit of detection (LOD) has been found as 0.46 μg/mL. Also, the binding constants (Kb) of the ASP with FSdsDNA has also been calculated both UV-Vis and DPV techniques.

Author information
  • Faculty of Art and Sciences, Department of Chemistry, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46040, Turkey

    Mustafa Cesme & Duygu Polat

  • Faculty of Arts and Sciences, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey

    Pelin Senel & Aysegul Golcu

  1. Kurbanoglu, S., Dogan-Topal, B., Rodriguez, E.P., Bozal-Palabiyik, B., Ozkan, S.A., and Uslu, B., Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals, J. Electroanal. Chem., 2016, vol. 775, p. 8.
  2. Diculescu, V.C., Chiorcea-Paquim, A.M., and Oliveira-Brett, A.M., Applications of a DNA-electrochemical biosensor, Trends Anal. Chem., 2016, vol. 79, p. 23.
  3. Marrazza, G., Chianella, I., and Mascini, M., Disposable DNA electrochemical sensor for hybridization detection, Biosens. Bioelectron., 1999, vol. 14, p. 43.
  4. Bohunicky, B. and Mousa, S., Biosensors: the new wave in cancer diagnosis, Nanotechnol. Sci. Appl., 2011, vol. 4, p. 1.
  5. Wang, J., From DNA biosensors to gene chips., Nucleic Acids Res., 2000, vol. 28, p. 3011.
  6. Mehrotra, P., Biosensors and their applications—a review, J. Oral Biol. Craniofacial Res., 2016, vol. 6, p. 153.
  7. Liu, A., Wang, K., Weng, S., Lei, Y., Lin, L., Chen, W., et al., Development of electrochemical dna biosensors, Trends Anal. Chem., 2012, vol. 37, p. 101.
  8. Erdem, A. and Ozsoz, M., Interaction of the anticancer drug epirubicin with DNA, Anal. Chim. Acta, 2001, vol. 437, p. 107.
  9. Erdem, A. and Ozsoz, M., Electrochemical DNA biosensors based on DNA-drug interactions, Electroanaly-sis, 2002, vol. 14, p. 965.
  10. Sistik, P., Urinovska, R., Brozmanova, H., Kacirova, I., Silhan, P., and Lemr, K., Fast simultaneous LC/MS/MS determination of 10 active compounds in human serum for therapeutic drug monitoring in psychiatric medication, Biomed. Chromatogr., 2016, vol. 30, p. 217.
  11. Noh, K., Jang, Y.J., Kwon, K. il, Kim, E., Jeong, T.C. heo., Yun, H. yeol, et al., Quantitative determination of amisulpride in rat plasma by HPLC-MS/MS, Arch. Pharm. Res., 2015, vol. 38, p. 63.
  12. Walash, M.I., Belal, F., Tolba, M.M., and Halawa, M.I., Spectrofluorimetric determination of amisulpride and bumidazone in raw materials and tablets, Luminescence, 2014, vol. 29, p. 1202.
  13. Ansermot, N., Brawand-Amey, M., Kottelat, A., and Eap, C.B., Fast quantification of ten psychotropic drugs and metabolites in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring, J. Chromatogr. A, 2013, vol. 1292, p. 160.
  14. Kovatsi, L., Redifis, K., Mihailidou, K., Pavlidis, P., and Samanidou, V., A validated UHPLC-diode array detector method for the bioanalysis of atypical antipsychotics in whole blood, urine and cerebrospinal fluid following SPE, Bioanalysis, 2012, vol. 4, p. 2929.
  15. Das, A., Bhaumik, U., Chakrabarty, U., Sarkar, A., Ghosh, A., Bose, A., et al., Comparative bioavailability study of amisulpride tablets in healthy Indian volunteers, Arzneimittelforschung, 2011, vol. 59, p. 166.
  16. Gschwend, M.H., Arnold, P., Ring, J., and Martin, W., Selective and sensitive determination of amisulpride in human plasma by liquid chromatography-tandem mass spectrometry with positive electrospray ionisation and multiple reaction monitoring, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2006, vol. 831, p. 132.
  17. Papoutsis, I., Rizopoulou, A., Nikolaou, P., Pistos, C., Spiliopoulou, C., and Athanaselis, S., A validated GC/MS method for the determination of amisulpride in whole blood, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2014, vol. 947–948, p. 111.
  18. Satyanarayana, V.K., Ramesh, T., and Nageswara, P., Simple and facile spectrophotometric methods for the determination of amisupride by diazo coupling reaction in pharmaceutical dormulations, Farmacia, 2012, vol. 60, p. 206.
  19. Skibiński, R., Komsta, Ł., Hopkała, H., and Suchodolska, I., Comparative validation of amisulpride determination in pharmaceuticals by several chromato-graphic, electrophoretic and spectrophotometric methods, Anal. Chim. Acta, 2007, vol. 590, p. 195.
  20. Péhourcq, F., Ouariki, S., and Bégaud, B., Rapid highperformance liquid chromatographic measurement of amisulpride in human plasma: application to manage acute intoxication, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2003, vol. 789, p. 101.
  21. Malavasi, B., Locatelli, M., Ripamonti, M., and Ascalone, V., Determination of amisulpride, a new benzamide derivative, in human plasma and urine by liquid-liquid extraction or solid-phase extraction in combination with high-performance liquid chromatog-raphy and fluorescence detection application to phar-macokinetics, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1996, vol. 676, p. 107.
  22. Ascalone, V., Ripamonti, M., and Malavasi, B., Ste-reospecific determination of amisulpride, a new ben-zamide derivative, in human plasma and urine by automated solid-phase extraction and liquid chromatography on a chiral column. Application to pharmacokinetics, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1996, vol. 676, p. 95.
  23. Özkan, S.A., Uslu, B., and Sentürk, Z., Electroanalytical characteristics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media, Electroanalysis, 2004, vol. 16, p. 231.
  24. Li, Q., Batchelor-Mcauley, C., and Compton, R.G., Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses, J. Phys. Chem. B, 2010, vol. 114, p. 7423.
  25. David, I.G., Popa, D.E., and Buleandra, M., Pencil graphite electrodes: a versatile tool in electroanalysis, J. Anal. Methods Chem., 2017, vol. 2017, no. 2, pp. 1–22.
  26. Marvin Sketch, 2017. https://doi.org/www.chemaxon.com/products/marvin.
  27. Muslu, H. and Gölcü, A., New metal based drug as a therapeutic agent: spectral, electrochemical, DNA-binding, surface morphology and photoluminescence properties, J. Mol. Struct., 2015, vol. 1092, p. 22.
  28. Çeşme, M., Gölcü, A., and Demirtaş, I., New metal based drugs: spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, vol. 135, p. 887.
  29. Demirezen, N., Tarinç, D., Polat, D., Çeşme, M., Gölcü, A., and Tümer, M., Synthesis of trimethoprim metal complexes: spectral, electrochemical, thermal, DNA-binding and surface morphology studies, Spec-trochim. Acta Part A Mol. Biomol. Spectrosc., 2012, vol. 94, p. 243.
  30. Karran, P., Mechanisms of tolerance to DNA damaging therapeutic drugs, Carcinogenesis, 2001, vol. 22, p. 1931.
  31. Magnusson, B., Eurachem Guide: The Fitness for Purpose of Analytical Methods, 2nd ed., 2014.
  32. Sangeetha Gowda, K.R., Mathew, B.B., Sudhamani, C.N., and Naik, H.S.B., Mechanism of DNA binding and cleavage, Biomed. Biotechnol., 2014, vol. 2, p. 1.
  33. Psomas, G., Mononuclear metal complexes with cipro-floxacin: synthesis, characterization and DNA-binding properties, J. Inorg. Biochem., 2008, vol. 102, p. 1798.
  34. Bogdan, M., Pirnau, A., Floare, C., and Bugeac, C., Binding interaction of indomethacin with human serum albumin, J. Pharm. Biomed. Anal., 2008, vol. 47, p. 981.