Examples



mdbootstrap.com



 
Статья
2021

Electron and Proton Donating Ability of the Pyrrolyl and Diazolyl Derivatives of Cycloalkanones


N. N. ChipaninaN. N. Chipanina, L. P. OznobikhinaL. P. Oznobikhina, M. V. SigalovM. V. Sigalov, V. Yu. SerykhV. Yu. Serykh, B. A. ShainyanB. A. Shainyan
Российский журнал общей химии
https://doi.org/10.1134/S1070363221060050
Abstract / Full Text

To assess the donor-acceptor properties of the basic and acidic sites in pyrrolyl and diazolyl derivatives of cycloalkanones, the energies and the shapes of the frontier molecular orbitals of their tautomers and conformers were calculated and the maps of the charge density distribution were constructed. The competition of these sites in the formation of hydrogen and coordination bonds and the possibility of participation of the studied products as ligands in metal complexes were shown. Complexes of diazolyl derivatives with CuCl2 were obtained. The synthesis of 7-amino-2-(pyrrolidin-2-ylmethylene)indan-1-one was performed and its structure and propensity to UV-initiated EZ isomerization were studied by NMR and IR spectroscopy.

Author information
  • A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, RussiaN. N. Chipanina, L. P. Oznobikhina, V. Yu. Serykh & B. A. Shainyan
  • Department of Chemistry, Ben-Gurion University of the Negev, 84105, Beer-Sheva, IsraelM. V. Sigalov
References
  1. Perjési, P., Takacs-Novak, K., Rozmer, Z., Sohar, P., Bozak, R.E., and Allen, T.M., Cent. Eur. J. Chem., 2012, vol. 10, p. 1500. https://doi.org/10.2478/s11532-012-0088-0
  2. Yamagata, N., Demizu, Y., Sato, Y., Doi, M., Tanaka, M., Nagasawa, K., Okuda, H., and Kurihara, M., Tetrahedron Lett., 2011, vol. 52, no. 7, p. 798. https://doi.org/10.1016/j.tetlet.2010.12.030
  3. Dimmock, J.R., Kandepu, N.M., Nazarali, A.J., Kowalchuk, T.P., Motaganahalli, N., Quail, J.W., Mykytiuk, P.A., Audette, G.F., Prasad, L., Perjesi, P., Allen, T.M., Santos, C.L., Szydlowski, J., De Clercq, E., and Balzarini, J., J. Med. Chem., 1999, vol. 42, p. 1358. https://doi.org/10.1021/jm9806695
  4. Perjési, P., Linnanto, J., Kolehmainen, E., Osz, E., and Virtanen, E., J. Mol. Struct., 2005, vol. 740, no. 1, p. 81. https://doi.org/10.1016/j.molstruc.2004.10.013
  5. Wei, A.C., Ali, M.A., Yoon, Y.K., Ismail, R., Choon, T.S., Kumar, R.S., Arumugam, N., Almansour, A.I., and Osman, H., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 15, p. 4930. https://doi.org/10.1016/j.bmcl.2012.06.047
  6. Vatsadze, S.Z. and Gromova, S.P., Macroheterocycles, 2017, vol. 10, p. 432. https://doi.org/10.6060/mhc171142v
  7. Bansal, R., Narang, G., Zimmer, C., and Hartmann, R.W., Med. Chem. Res., 2011, vol. 20, p. 661. https://doi.org/10.1007/s00044-010-9368-4
  8. Pati, H.N., Das, U., De Clercq, E., Balzarini, J., and Dimmock, J.R., J. Enzyme Inhib. Med. Chem., 2007, vol. 22, p. 37. https://doi.org/10.1080/14756360600958057
  9. Dimmock, J.R., Zello, G.A., Oloo, E.O., Quail, J.W., Kraatz, H.-B., Perjesi, P., Aradi, F., Takacs-Novak, K., Allen, T.M., Santos, C.L., Balzarini, J., De Clercq, E., and Stables, J.P., J. Med. Chem., 2002, vol. 45, p. 3103. https://doi.org/10.1021/jm010559p
  10. Sarjiman, S.S., Reksohadiprojio, M.S., Hakim, L., van der Goot, H., and Timmerman, H., Eur. J. Med. Chem., 1997, vol. 32, p. 625.
  11. Kawamata, J., Inoue, K., Kasatani, H., and Terauchi, H., Japan J. Appl. Phys., 1992, vol. 31, p. 254.
  12. Vatsadze, S.Z., Golikov, A.G., Kriven’ko, A.P., and Zyk, N.V., Russ. Chem. Rev., 2008, vol. 77, p. 661. https://doi.org/10.1070/RC2008v077n08ABEH003771
  13. Kone, M.G., Affi, S.T., Ziao, N., Bamba, K., and Assanvo, E.F., J. Chem. Pharm. Res., 2015, vol. 7, no. 12, p. 805.
  14. Zheng, S.-L., Tong, M.-L., and Chen, X.-M., Coord. Chem. Rev., 2003, vol. 246, p. 185. https://doi.org/10.1016/S0010-8545(03)00116-4
  15. Vatsadze, S.Z., Kovalkina, M.A., Sviridenkova, N.V., Zyk, N.V., Churakov, A.V., Kuzmina, L.G., and Howard, J.A.K., Cryst. Eng. Commun., 2004, vol. 6, p. 112. https://doi.org/10.1039/B402418D
  16. Aly, A.A.M., Vatsadze S, Z., Walfort, B., Ruffer, T., and Lang, H., Russ. J. Inorg. Chem., 2017, vol. 62, no. 12, p. 1584. https://doi.org/10.1134/S0036023617120038
  17. Aly, A.A.M., Vatsadze, S.Z., Chernikov, A.V., Walfort, B., Ruffer, T., and Lang, H., Polyhedron, 2007, vol. 26, no. 14, p. 3925. https://doi.org/10.1016/j.poly.2007.04.045
  18. Utochnikova, V.V., Latipov, E.V., Dalinger, A.I., Nelyubina, Y.V., Vashchenko, A.A., Hoffmann, M., Kalyakina, S., Vatsadze, S.Z., Schepers, U., Bräse, S., and Kuzmina, N.P., J. Luminesc., 2018, vol. 202, p. 38. https://doi.org/10.1016/j.jlumin.2018.05.022
  19. Ahmad, K., Naseem, H.A., Parveen, S., Shah, H.R., Shah, S.S.A., Shaheen, S., and Ashfaq, A., J. Mol. Struct., 2019, vol. 1198, p. 126885. https://doi.org/10.1016/j.molstruc.2019.126885
  20. Green, T.L.C., Nelson, P.N., and Lawrence, M.A.W., J. Mol. Struct., 2019, vol. 1195, p. 426. https://doi.org/10.1016/j.molstruc.2019.06.011
  21. Dalinger, A.I., Medved’ko, A.V., Balalaeva, A.I., Vatsadze, I.A., Dalinger, I.L., and Vatsadze, S.Z., Chem. Heterocycl. Compd., 2020, vol. 56, no. 2, p. 180. https://doi.org/10.1007/s10593-020-02643-2
  22. Sigalov, M., Shainyan, B., Chipanina, N., Oznobikhina, L., Strashnikova, N., and Sterkhova, I., J. Org. Chem., 2015, vol. 80, p. 10521. https://doi.org/10.1021/acs.joc.5b01604
  23. Sigalov, M.V., Shainyan, B.A., and Sterkhova, I.V., J. Org. Chem., 2017, vol. 82, p. 9075. https://doi.org/10.1021/acs.joc.7b01589
  24. Chipanina, N.N., Oznobikhina, L.P., Sigalov, M.V., and Shainyan, B.A., J. Phys. Org. Chem., 2019, vol. 32, p. e3924. https://doi.org/10.1002/poc.3924
  25. Sigalov, M.V., Shainyan, B.A., Chipanina, N.N., Oznobikhina, L.P., and Kuzmin, A.V., Tetrahedron, 2020, vol. 76, p. 131202. https://doi.org/10.1016/j.tet.2020.131202
  26. Sigalov, M., Shainyan, B., Chipanina, N., Ushakov, I., and Shulunova, A., J. Phys. Org. Chem., 2009, vol. 22, p. 1178. https://doi.org/10.1002/poc.1573
  27. Sigalov, M.V., Shainyan, B.A., Chipanina, N.N., and Oznobikhina, L.P., J. Phys. Chem. (A), 2013, vol. 117, p. 11346.
  28. Sigalov, M.V., Shainyan, B.A., Chipanina, N.N., Oznobikhina, L.P., and Sterkhova, I.V., Tetrahedron, 2021, vol. 77, p. 131755. https://doi.org/10.1016/j.tet.2020.131755
  29. Venil, K., Lakshmi, A., Balachandran, V., Narayana, B., and Salian, V.V., J. Mol. Struct., 2021, vol. 1225, p. 129070. https://doi.org/10.1016/j.molstruc.2020.129070
  30. Mehmood, A., Fahim, A., Ahmed, M., and Noureen, S., J. Mol. Struct., 2020, vol. 1217, p. 128483. https://doi.org/10.1016/j.molstruc.2020.128483
  31. Hou, M., Zhu, Y., Li, Q., and Scheiner, S., ChemPhysChem., 2020, vol. 21, p. 212. https://doi.org/10.1002/cphc.201901076
  32. Sánchez-Sanz, G., Trujillo, C., Alkorta, I., and Elguero, J., ChemPhysChem., 2019, vol. 20, p. 1572. https://doi.org/10.1002/cphc.201900354
  33. Kalaiarasi, C., Sangeetha, P., Pavan, M.S., and Kumaradhas, P., J. Mol. Struct., 2018, vol. 1170, p. 105. https://doi.org/10.1016/j.molstruc.2018.05.030
  34. Politzer, P., Murray, J.S., and Concha, M.C., Int. J. Quantum Chem., 2002, vol. 88, p. 19. https://doi.org/10.1002/qua.10109
  35. Hussein, W., Walker, C.G., Peralta-Inga, Z., and Murray, J.S., Int. J. Quantum Chem., 2001, vol. 82, p. 160. https://doi.org/10.1002/qua.1031
  36. Murray, J.S., Abu-Awwad, F., and Politzer, P., J. Mol. Struct. (Theochem)., 2000, vol. 501, p. 241. https://doi.org/10.1016/S0166-1280(99)00435-2
  37. Ehresmann, B., Martin, B., Horn, A.H.C., and Clark, T., J. Mol. Model., 2003, vol. 9, p. 342. https://doi.org/10.1007/s00894-003-0153-x
  38. Galabov, B., Bobadova-Parvanova, P., Ilieva, S., and Dimitrova, V., J. Mol. Struct. (Theochem)., 2003, vol. 630, p. 101. https://doi.org/10.1016/S0166-1280(03)00149-0
  39. Kecel-Gunduz, S., Bicak, B., Celik, S., Akyuz, S., and Ozel, A.E., J. Mol. Struct., 2017, vol. 1137, p. 756. https://doi.org/10.1016/j.molstruc.2017.02.075
  40. Jangir, A.K., Mandviwala, H., Patel, P., Sharma, S., and Kuperkar, K., J. Mol. Liquid., 2020, vol. 317, p. 113923. https://doi.org/10.1016/j.molliq.2020.113923
  41. Politzer, P., Laurence, P.R., and Jayasuriya, K., Environ. Health Persp., 1985, vol. 61, p. 191. https://doi.org/10.1289/ehp.8561191
  42. Caballero-García, G., Mondragón-Solórzano, G., Torres-Cadena, R., Díaz-García, M., Sandoval-Lira, J., and Barroso-Flores, J., Molecules, 2019, vol. 24, p. 79. https://doi.org/10.3390/molecules24010079
  43. Bauza, A., Mooibroek, T.J., and Frontera, A., Angew. Chem. Int. Ed., 2013, vol. 52, p. 12317. https://doi.org/10.1002/anie.201306501
  44. Bauza, A., Seth, S.K., and Frontera, A., Coord. Chem. Rev., 2019, vol. 384, p. 107. https://doi.org/10.1016/j.ccr.2019.01.003
  45. Grabowski, S.J., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 1824. https://doi.org/10.1039/c3cp53369g
  46. Zierkiewicz, W. and Michalczyk, M., Theor. Chem. Acc., 2017, vol. 136, p. 125. https://doi.org/10.1007/s00214-017-2145-4
  47. Vektariene, A., Vektaris, G., and Svoboda, J., Arkivoc, 2009, p. 311.
  48. Kaya, A.A., Demircioğlu, Z., Kaya, E.Ç., and Büyükgüngör, O., Heterocycl. Commun., 2014, vol. 20, p. 51.
  49. Boukabcha, N., Djafri, A., Megrouss, Y., Tamer, Ö., Avci, D., Tuna, M., Dege, N., Chouaih, A., Atalay, Y., and Hamzaoui, F., J. Mol. Struct., 2019, vol. 1194, p. 112. https://doi.org/10.1016/j.molstruc.2019.05.074
  50. Sathiya, S., Senthilkumar, M., and Umarani, P., J. Mol. Struct., 2021, vol. 1224, p. 129017. https://doi.org/10.1016/j.molstruc.2020.129017
  51. Sivakumar, C., Balachandran, V., Narayana, B., Salian, V.V., Revathi, B., Shanmugapriya, N., and Vanasundari, K., J. Mol. Struct., 2021, vol. 1224, p. 129010. https://doi.org/10.1016/j.molstruc.2020.129010
  52. Siddiqui, N. and Javed, S., J. Mol. Struct., 2021, vol. 1224, p. 129021. https://doi.org/10.1016/j.molstruc.2020.129021
  53. Custodio, J.M.F., Gotardo, F., Vaz, W.F., D’Oliveira, G.D.C., Cocca, L.H.Z., Fonseca, R.D., Perez, C.N., Boni, L., and Napolitano, H.B., J. Mol. Struct., 2019, vol. 1198, p. 126896. https://doi.org/10.1016/j.molstruc.2019.126896
  54. Kirishnamaline, G., Magdaline, J.D., Chithambarathanu, T., Aruldhas, D., and Anuf, A.R., J. Mol. Struct., 2021, vol. 1225, p. 129118. https://doi.org/10.1016/j.molstruc.2020.129118
  55. Rauk, A., Orbital Interaction Theory of Organic Chemistry, New York; Chichester: John Wiley & Sons, Inc., 2013.
  56. Pearson, R.G., J. Chem. Sci., 2005, vol. 117, p. 369.
  57. Pearson, R.G., J. Am. Chem. Soc., 1985, vol. 107, p. 6801. https://doi.org/10.1021/ja00310a009
  58. Singh, P., Islam, S.S., Ahmad, H., and Prabaharan, A., J. Mol. Struct., 2018, vol. 1154, p. 39. https://doi.org/10.1016/j.molstruc.2017.10.012
  59. Al-Anber, M., Vatsadze, S., Holze, R., Lang, H., and Thiel, W.R., Dalton Trans., 2005, p. 3632. https://doi.org/10.1039/B508314A
  60. Vatsadze, S., Al-Anber, M., Thiel, W.R., Lang, H., and Holze, R., J. Solid State Electrochem., 2005, vol. 9, no. 11, p. 764. https://doi.org/10.1007/s10008-005-0676-4
  61. Nuriev, V.N., Zyk, N.V., and Vatsadze, S.Z., Arkivoc, 2005, vol. 4, p. 208. https://doi.org/10.3998/ark.5550190.0006.417
  62. Kudryavtsev, K.V., Shulga, D.A., Chupakhin, V.I., Sinauridze, E.I., Ataullakhanov, F.I., and Vatsadze, S.Z., Tetrahedron, 2014, vol. 70, p. 7854. https://doi.org/10.1016/j.tet.2014.09.009
  63. Rocha, M., Gil, D.M., EcheVerría, G.A., Piro, O.E., Jios, J.J., and Ulic, S.E., J. Fluor. Chem., 2018, vol. 208, p. 36. https://doi.org/10.1016/j.jfluchem.2018.01.001
  64. Vatsadze, S.Z., Tyurin, V.S., Zyk, N.V., Churakov, A.V., Kuz’mina, L.G., Avtomonov, E.V., Rakhimov, R.D., and Butin, K.P., Russ. Chem. Bull., 2005, vol. 54, p. 1825 https://doi.org/10.1007/s11172-006-0044-2
  65. Mukhina, O.A., Bhuvan Kumar, N.N., Arisco, T.M., Valiulin, R.A., Metzel, G.A., and Kutateladze, A.G., Angew. Chem. Int. Ed., 2011, vol. 50, p. 9423. https://doi.org/10.1002/anie.201103597
  66. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
  67. Lu, T. and Chen, F.J., J. Comput. Chem., 2012, vol. 33, p. 580. https://doi.org/10.1002/jcc.22885
  68. Weinhold, F. and Landis, C.R., Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge: Cambridge University Press, 2005.
  69. Glendening, E.D., Reed, A.E., Carpenter, J.E., and Weinhold, F., NBO Version, 3.1. Pittsburg, PA, CT: Gaussian, Inc., 2003.