Examples



mdbootstrap.com



 
Статья
2022

3-(4-R-3-Furazanyl)-5-nitropyrazolyl-1,2,4-oxadiazoles as a new class of energy rich ensembles


T. E. KhoranyanT. E. Khoranyan, O. V. SerushkinaO. V. Serushkina, I. L. DalingerI. L. Dalinger
Российский химический вестник
https://doi.org/10.1007/s11172-022-3586-z
Abstract / Full Text

A number of new energetic compounds were synthesized based on a combination of pyrazole, furazan, and 1,2,4-oxadiazole. Density, temperature of decomposition, and mechanical sensitivity of the compounds obtained were experimentally determined. Their detonation parameters were calculated.

Author information
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian FederationT. E. Khoranyan, O. V. Serushkina, I. A. Vatsadze, K. Yu. Suponitsky, K. A. Monogarov, T. K. Shkineva & I. L. Dalinger
References
  1. J. P. Agrawal, D. L. Hodgson, Organic Chemistry of Explosives, John Wiley & Sons, 2007, pp. 332–334.
  2. T. M. Klapotke, Chemistry of High-Energy Materials, 2nd ed., Walter de Gruyter, Berlin, 2012.
  3. S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Yu. V. Tomilov, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 731; DOI: https://doi.org/10.1016/j.mencom.2021.11.001.
  4. A. B. Sheremetev, Chem. Heterocycl. Compd., 2017, 53, 629.
  5. M. Benz, T. M. Klapötke, J. Stierstorfer, Z. Anorg. Allg. Chem., 2020, 646, 1380; DOI: https://doi.org/10.1002/zaac.202000123.
  6. J. Cai, Ch. Xie, J. Xiong, J. Zhang, P. Yin, S. Pang, Chem. Eng. J., 2022, 433, 134480; DOI: https://doi.org/10.1016/j.cej.2021.134480.
  7. T. Yan, Ch. Yang, J. Ma, G. Cheng, H. Yang, Chem. Eng. J., 2022, 428, 131400; DOI: https://doi.org/10.1016/j.cej.2021.131400.
  8. T. Yan, G. Cheng, H. Yang, New J. Chem., 2020, 44, 6643; DOI: https://doi.org/10.1039/D0NJ00518E.
  9. M. Xu, G. Cheng, H. Xiong, B. Wang, X. Ju, H. Yang, New J. Chem., 2019, 43, 11157; DOI: https://doi.org/10.1039/C9NJ01445D.
  10. A. A. Konnov, I. M. Dubrovin, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 2189; DOI: https://doi.org/10.1007/s11172-021-3331-z.
  11. X. Zheng, T. Yan, L. Qian, H. Yang, G. Cheng, Def. Technol., 2022; DOI: https://doi.org/10.1016/j.dt.2022.03.003.
  12. T. E. Khoranyan, T. K. Shkineva, I. A. Vatsadze, A. Kh. Shakhnes, N. V. Muravyev, A. B. Sheremetev, I. L. Dalinger, Chem. Heterocycl. Compd., 2022, 58, 37; DOI: https://doi.org/10.1007/s10593-022-03054-1.
  13. L. L. Fershtat, N. N. Makhova, ChemPlusChem., 2019, 85, 13; DOI: https://doi.org/10.1002/cplu.201900542.
  14. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovsky, Russ. Chem. Rev., 2020, 89, 1; DOI: https://doi.org/10.1070/RCR4908.
  15. I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, N. V. Muravyev, A. B. Sheremetev, Chem. — Asian J., 2018, 13, 1165; DOI: https://doi.org/10.1002/asia.201800214.
  16. I. L. Dalinger, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, Propellants, Explos., Pyrotech., 2016, 41, 789; DOI: https://doi.org/10.1002/prep.201600050.
  17. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780; DOI: https://doi.org/10.1039/C8TA05179H.
  18. I. L. Dalinger, T. K. Shkineva, I. A. Vatsadze, A. V. Kormanov, A. M. Kozeev, K. Yu. Suponitsky, A. N. Pivkina, A. B. Sheremetev, FirePhysChem, 2021, 1, 83; DOI: https://doi.org/10.1016/j.fpc.2021.04.005.
  19. I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, K. Yu. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2015, 25, 429; DOI: https://doi.org/10.1016/j.mencom.2015.11.010.
  20. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, A. V. Kormanov, M. I. Struchkova, K. Yu. Suponitsky, A. A. Bragin, K. A. Monogarov, V. P. Sinditskii, A. B. Sheremetev, Chem. — Asian J., 2015, 10, 1987; DOI: https://doi.org/10.1002/asia.201500533.
  21. T. K. Shkineva, I. A. Vatsadze, T. E. Khoranyan, D. L. Lipilin, A. N. Pivkina, I. L. Dalinger, Chem. Heterocycl. Compd., 2021, 57, 828; DOI: https://doi.org/10.1007/s10593-021-02987-3.
  22. Q. Wang, Y. Shao, M. Lu, Cryst. Growth Des., 2019, 19, 839; DOI: https://doi.org/10.1021/acs.cgd.8b01404.
  23. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, D. B. Lempert, E. K. Kosareva, T. S. Kon’kova, Y. N. Matyushin, V. A. Tartakovsky, RSC Adv., 2021, 11, 24013; DOI: https://doi.org/10.1039/D1RA03919A.
  24. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.
  25. T. A. Keith, AIMAll, Version 14.11.23, TK Gristmill Software, USA (KS); http://aim.tkgristmill.com.
  26. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457; DOI: https://doi.org/10.1016/S0009-2614(01)00178-6.
  27. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170; DOI: https://doi.org/10.1016/S0009-2614(98)00036-0.
  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, K. N. Jr. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, 2004.
  29. A. B. Sheremetev, N. S. Aleksandrova, S. S. Semyakin, K. Yu. Suponitsky, D. B. Lempert, Chem. — Asian J., 2019, 14, 4255; DOI: https://doi.org/10.1002/asia.201901280.
  30. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, K. Yu. Suponitsky, D. E. Dmitriev, A. B. Sheremetev, Org. Chem. Front., 2019, 6, 249; DOI: https://doi.org/10.1039/C8QO01173G.
  31. K. Yu. Suponitsky, A. F. Smol’yakov, I. V. Ananyev, A. V. Khakhalev, A. A. Gidaspov, A. B. Sheremetev, ChemistrySelect, 2020, 5, 14543; DOI: https://doi.org/10.1002/slct.202004020.
  32. Y. V. Nelyubina, I. V. Glukhov, M. Yu. Antipin, K. A. Lyssenko, Chem. Commun., 2010, 46, 3469; DOI: https://doi.org/10.1039/B927429D.
  33. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921; DOI: https://doi.org/10.1039/C6RA05826D.
  34. I. V. Fedyanin, A. I. Samigullina, I. A. Krutov, E. L. Gavrilova, D. V. Zakharychev, Crystals, 2021, 11, 1126; DOI: https://doi.org/10.3390/cryst11091126.
  35. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov, A. N. Pivkina, Chem. Eng. J., 2021, 421, 129804, DOI: https://doi.org/10.1016/j.cej.2021.129804.
  36. M. S. Westwell, M. S. Searle, D. L. Wales, D. H. Williams, J. Am. Chem. Soc., 1995, 117, 5013; DOI: https://doi.org/10.1021/ja00123a001.
  37. N. M. Baraboshkin, A.-M. Stratulat, T. S. Pivina, Russ. Chem. Bull., 2021, 70, 1893; DOI: https://doi.org/10.1007/s11172-021-3293-1.
  38. N. V. Muravyev, D. Wozniak, D. Piercey, J. Mater. Chem. A, 2022; DOI: https://doi.org/10.1039/D2TA01339H.
  39. H. Li, L. Zhang, N. Petrutik, K. Wang, Q. Ma, D. Shem-Tov, F. Zhao, M. Gozin, ACS Cent. Sci., 2020, 6, 54; DOI: https://doi.org/10.1021/acscentsci.9b01096.
  40. R. Bu, Y. Xiong, X. Wei, H. Li, Ch. Zhang, Cryst. Growth Des., 2019, 19, 5981; DOI: https://doi.org/10.1021/acs.cgd.9b00853.
  41. Ph. F. Pagoria, M. Zhang, N. B. Zuckerman, A. J. DeHope, D. A. Parrish, Chem. Heterocycl. Compd., 2017, 53, 760; DOI: https://doi.org/10.1007/s10593-017-2122-9.
  42. K. Cernovská, M. Kemter, H. C. Gallmeier, P. Rzepecki, T. Schrader, B. König, Org. Biomol. Chem., 2004, 2, 1603; DOI: https://doi.org/10.1039/B401968G.
  43. T. Semeraro, C. Mugnaini, F. Manetti, S. Pasquini, F. Corelli, Tetrahedron, 2008, 64, 11249; DOI: https://doi.org/10.1016/j.tet.2008.09.030.
  44. APEX2 and SAINT, Bruker AXS Inc., USA (WT), 2014.
  45. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.