Examples



mdbootstrap.com



 
Статья
2021

XPS Study of Long-Term Passivation of GaAs Surfaces Using Saturated Ammonium Sulfide Solution under Optimum Condition


 Hedieh Mahmoodnia Hedieh Mahmoodnia, Alireza SalehiAlireza Salehi, Valmor Roberto MastelaroValmor Roberto Mastelaro
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521050104
Abstract / Full Text

The application of III–V semiconductors, including GaAs, in various optoelectronic devices has attracted considerable attention due to their high electron mobility. The presence of native oxide on GaAs surfaces causes a high surface density of states that can be removed by passivation techniques. One of the most common passivation approaches is the ammonium sulfide ((NH4)2Sx) treatment; however, the GaAs surface tends to re-oxidize after passivation in a short time. This study presents the long-term passivation of GaAs surfaces induced by the use of a saturated ammonium sulfide solution under optimum condition. The X-ray photoelectron spectroscopy (XPS) study was conducted to prove our aim. XPS results demonstrate the removal of the native oxide layer from the GaAs surface immediately after passivation and the absence of surface re-oxidation for several days after passivation and air exposure. Therefore this approach can be used as an effective way to achieve stable passivated surface of GaAs.

Author information
  • Department of Electronics, Faculty of Electrical Engineering, K.N. Toosi University of Technology, 1969764499, Tehran, Iran Hedieh Mahmoodnia & Alireza Salehi
  • Institute of Physics of São Carlos (IFSC), University of Sao Paulo, Sao Carlos, BrazilValmor Roberto Mastelaro
References
  1. Popov, A., Bilevich, D., Salnikov, A., Dobush, I., Goryainov, A., and Kalentyev, A., Automatic large-signal GaAs HEMT modeling for power amplifier design, AEU – Int. J. Electron. Commun., 2019, vol.100, p. 138.
  2. Jia, C., Wu, D., Wu, E., Guo, J., Zhao, Z., Shi, Z., et al., A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity, J. Mater. Chem. C, 2019, vol. 7, p. 3817.
  3. Bhunia, A., Singh, M.K., Gobato, Y.G., Henini, M., and Datta, S., Experimental evidences of quantum confined 2D indirect excitons in single barrier GaAs/AlAs/GaAs heterostructure using photocapacitance at room temperature, J. Appl. Phys., 2018, vol. 123, p. 044305.
  4. Lohani, J., Sapra, S., and Tyagi, R., Effect of pressure and time on the self catalyzed growth of epitaxial GaAs nanostructures by MOCVD, Vacuum, 2019, vol. 164, p. 343.
  5. Chhabra, A., Kumar, A., and Chaujar, R., Sub-20 nm GaAs junctionless FinFET for biosensing application, Vacuum, 2019,vol. 160, p. 467.
  6. Fallahnejad, M., Vadizadeh, M., Salehi, A., Kashaniniya, A., and Razaghian, F., Impact of channel doping engineering on the high-frequency noise performance of junctionless In0.3Ga0.7As/GaAs FET: a numerical simulation study, Phys. E: Low-Dimens. Syst. Nanostruct., 2020, vol. 115, p. 113715.
  7. Yamajo, S., Yoon, S., Liang, J., Sodabanlu, H., Watanabe, K., Sugiyama, M., et al., Hard X-ray photoelectron spectroscopy investigation of annealing effects on buried oxide in GaAs/Si junctions by surface-activated bonding, Appl. Surf. Sci., 2019, vol. 473, p. 627.
  8. Huang, X., Xia, P., Wang, X., and Hu, Y., Surface passivation of GaAs (0 0 1) by Hg2Cl2 nanoplates combined with hexadecanethiol, Appl. Surf. Sci., 2019, vol. 473, p. 141.
  9. Singh, S.D., Das, A., Swami, M.K., Goutam, U.K., Sharma, R.K., Patel, H.S., et al., Evaluation of interfacial structure of [111] and [001] oriented epitaxial NiO layers on GaAs substrate by non-destructive techniques, Vacuum, 2019, vol. 159, p. 335.
  10. Yoshikawa, H., Watanabe, K., Kotani, T., Izumi, M., Iwamoto, S., and Arakawa, Y., Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward high-efficiency solar cells, Jpn. J. Appl. Phys., 2018, vol. 57, p. 062001.
  11. Zhou, L., Chu, X., Chi, Y., and Yang, X., Property improvement of GaAs surface by 1-octadecanethiol passivation, Crystals, 2019, vol. 9, p. 130.
  12. Kartal, M., Xia, F., Ralph, D., Rickard, W.D.A., Renard, F., and Li, W., Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 2020, vol. 191, p. 105192.
  13. Roychowdhury, R., Dixit, V.K., Vashisht, G., Sharma, T.K., Mukherjee, C., Rai, S.K., et al., Surface and interface properties of ZrO2/GaAs, SiO2/GaAs and GaP/GaAs hetero structures investigated by surface photovoltage spectroscopy, Appl. Surf. Sci., 2019, vol. 476, p. 615.
  14. Robertson, L. and La, J., Defect states at III–V semiconductor oxide interfaces, Appl. Phys. Lett., 2011, vol. 98, p. 082903.
  15. Ohtake, A., Shunji G., and Jun, N., Atomic structure and passivated nature of the Se-treated GaAs(111)B surface, Sci. Rep., 2018, vol. 8, no. 1.
  16. Tang, F., Givens, M.E., Xie, Q., and Raisanen, P., US Patent 9,911,676, 2018.
  17. Michalczewski, K., Ivaldi, F., Kubiszyn, Ł., Benyahia, D., Ciosek, J., Boguski, J., et al., Long term stability study of InAsSb mid-wave infrared HOT detectors passivated through two step passivation technique, Proc. 13th Integrated Optics: Sensors, Sensing Structures and Methods Conf., Szcyrk, 2018.
  18. Heo, J.S., Jo, J.-W., Kang, J., Jeong, C.-Y., Jeong, H.Y., Kim, S.K., et al., Water-mediated photochemical treatments for low-temperature passivation of metal-oxide thin-film transistors, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 10403.
  19. Sato, K., Sakata, M., and Ikoma, H., X-ray photoelectron spectroscopy and electrical characteristics of Na2S-passivated GaAs surface: comparison with (NH4)2Sx-passivation, Jpn. J. Appl. Phys., 1993, vol. 32, p. 3354.
  20. Kim, D.W., Song, J.-W., Jin, H.S., Yoo, B., Lee, J.-H., and Park, T.J., Sulfur-enhanced field-effect passivation using (NH4)2S surface treatment for black Si solar cells, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 28.
  21. Saini, A.K., Srivastav, V., Gupta, S., Sharma, B.L., Asthania, M., Singh, N., et al., Improvement of electrical properties of ZnS/CdTe–HgCdTe interface by (NH4)2S treatment, Infrared Phys. Technol., 2019, vol. 102, p. 102988.
  22. Holmberg, V.C. and Korgel, B.A., Corrosion resistance of thiol- and alkene-passivated germanium nanowires, Chem. Mater., 2010, vol. 22, p. 3698.
  23. Cuypers, D., Fleischmann, C., van Dorp, D.H., Brizzi, S., Tallarida, M., Müller, M., et al., Sacrificial self-assembled monolayers for the passivation of GaAs (100) surfaces and interfaces, Chem. Mater., 2016, vol. 28, p. 5689.
  24. Garg, M., Naik, T.R., Pathak, R., Rao, V.R., Liao, C.-H., Li, K.-H., et al., Effect of surface passivation process for AlGaN/GaN HEMT heterostructures using phenol functionalized-porphyrin based organic molecules, J. Appl. Phys., 2018, vol. 124, p. 195702.
  25. Jiang, S., He, G., Liang. S., Zhu, L., Li, W., Zheng, C., et al., Modulation of interfacial and electrical properties of HfGdO/GaAs gate stacks by ammonium sulfide passivation and rapid thermal annealing, J. Alloys Compd., 2017, vol. 704, p. 322.
  26. Aguirre-Tostado, F., Milojevic, M., Choi, K., Kim, H., Hinkle, C., Vogel, E., et al., S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates, Appl. Phys. Lett., 2008, vol. 93, p. 061907.
  27. Salehi, A., Nikfarjam, A., and Kalantari, D.J., Highly sensitive humidity sensor using Pd/porous GaAs Schottky contact, IEEE Sens. J., 2006, vol. 6, p. 1415.
  28. Behnejad, J., Salehi, A., and Mahmoodnia, H., Electrical characteristics enhancement of Au/n-GaAs Schottky barrier diode using sulfur passivation of GaAs surface by (NH4)2Sx sulfurization technique, Proc. IEEE Int. Conf. on Electrical Engineering (ICEE), Boumerdes, 2017, pp. 283–287.
  29. Fairley, N., 2005. http://www.casaxps.com.
  30. Budz, H.A., Biesinger, M.C., and LaPierre, R.R., Passivation of GaAs by octadecanethiol self-assembled monolayers deposited from liquid and vapor phases, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom., 2009, vol. 27, p. 637.
  31. Ghosh, S.C., Biesinger, M.C., LaPierre, R.R., and Kruse, P., X-ray photoelectron spectroscopic study of the formation of catalytic gold nanoparticles on ultraviolet-ozone oxidized GaAs(100) substrates, J. Appl. Phys., 2007, vol. 101, p. 114322.
  32. Kim, J.-W., Kang, M.-G., and Park, H.-H., Investigation on the surface characteristics of GaAs after sulfuric-vapor treatment, Thin Solid Films, 1999, vol. 355, p. 423.
  33. Petrovykh, D., Yang, M., and Whitman L., Chemical and electronic properties of sulfur-passivated InAs surfaces, Surf. Sci., 2003, vol. 523, p. 231.
  34. Mancheno-Posso, P. and Muscat, A.J., Self-assembly of alkanethiolates directs sulfur bonding with GaAs (100), Appl. Surf. Sci., 2017, vol. 397, p. 1.