Examples



mdbootstrap.com



 
Статья
2019

Photophysical Constants of the Tetraoxa[8]Circulene Molecule


Yu. V. KonyshevYu. V. Konyshev, V. N. CherepanovV. N. Cherepanov, G. V. BaryshnikovG. V. Baryshnikov, R. R. ValievR. R. Valiev
Российский физический журнал
https://doi.org/10.1007/s11182-019-01598-y
Abstract / Full Text

The rate constants of photophysical processes (radiation rate constant, internal conversion rate constant, and quantum fluorescence yield) have been calculated for the tetraoxa[8]circulene molecule by the INDO/S, TDDFT, and CC2 methods. It is confirmed that the doubly degenerate triplet level Т2 and the level Т1 are located below the first singlet excited level S1. According to the selection rules for the angular momentum, the spin-orbit interaction between the levels S1 and T1 (S1 and T2) is equal to zero. Therefore, the internal conversion is the only nonradiative channel in this molecule. The results of calculations also demonstrate that values of the internal conversion rate constant and the quantum fluorescence yield obtained by the INDO/S method are incorrect.

Author information
  • National Research Tomsk State University, Tomsk, RussiaYu. V. Konyshev, V. N. Cherepanov, G. V. Baryshnikov & R. R. Valiev
References
  1. C. M. Marian, WIREs Comput. Mol. Sci., 2, 183–203 (2012).
  2. R. R. Valiev, V. N. Cherepanov, G. V. Baryshnikov, and D. Sundholm, Phys. Chem. Chem. Phys., 20, 6121–6133 (2018).
  3. G. V. Baryshnikov, B. F. Minaev, and V. A. Minaev, Usp. Khim., 84, 455–484 (2015).
  4. H. E. Erdtman and H.-E. Högberg, Tetrahedron Lett., 11, No. 38, 3389–3392 (1970).
  5. R. R. Valiev, V. N. Cherepanov, V. Y. Artyukhov, and D. Sundholm, Phys. Chem. Chem. Phys., 14, 11508–11517 (2012).
  6. R. R. Valiev, V. N. Cherepanov, E. G. Ermolina, et al., J. Mol. Model., 19, 4631–4637 (2013).
  7. R. R. Valiev, E. N. Telminov, T. A. Solodova, et al., Spectrochim. Acta, Part A, 128, 137–140 (2014).
  8. V. Ya. Artyukhov and A. I. Galeeva, Russ. Phys. J., 29, No. 11, 949–952 (1986).
  9. C. Hattig and F. J. Weigend, Chem. Phys., 113, 5154–5161 (2000).
  10. N. Mardirossian and M. Head-Gordon, Mol. Phys., 115, No. 19, 2315–2372 (2017).
  11. R. R. Valiev, V. N. Cherepanov, R. T. Kuznetsova, and E. G. Ermolina, Russ. Phys. J., 55, No. 4, 378–382 (2012).
  12. R. R. Valiev, E. G. Ermolina, Yu. N. Kalugina, et al., Spectrochim. Acta, Part A, 87, 40–45 (2012).
  13. R. R. Valiev, A. K. Drozdova, P. V. Petunin, et al., Russ. Phys. J., 59, No. 2, 197–203 (2016).
  14. R. R. Valiev, K. B. Kopbalina, V. N. Cherepanov, et al., Russ. Phys. J., 57, No. 1, 95–99 (2014).
  15. A. A. Granovsky, J. Chem. Phys., 134, id 214113 (2011).
  16. N. N. Karaush, R. R. Valiev, G. V. Baryshnikov, et al., Chem. Phys., 459, 65–71 (2015).
  17. S. J. Strickler and R. A. Berg, Chem. Phys. Lett., 40, No. 6, 814 (1964).
  18. V. Ya. Artyukhov, A. I. Galeeva, G. V. Mayer, and V. V. Ponomarev, Opt. Spektrosk., 82, No. 4, 563–566 (1997).