Examples



mdbootstrap.com



 
Статья
2022

Thermodynamics of the Complexation of Cu2+ with Nicotinamide and Nicotinate Ions in Aqueous Solutions of Ethanol


N. N. KuranovaN. N. Kuranova, G. A. GamovG. A. Gamov, A. S. GushchinaA. S. Gushchina, V. A. SharninV. A. Sharnin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422060139
Abstract / Full Text

Copper(II) complexes with nicotinamide and nicotinate ion are synthesized. The composition and structure of the complexes are determined via elemental analysis and IR spectroscopy. Products of the thermal decomposition of the complexes are studied experimentally via synchronous thermal gravimetric and IR analysis. Changes in the enthalpy of Cu2+ complexation with nicotinate ions in a water–ethanol binary solvent are determined, and the obtained data are analyzed in terms of the solvation thermodynamic approach. It is found that differences in the enthalpy characteristics of solvation of the central and complex ions neutralize the contribution from ligand desolvation, resulting in small changes to the ΔtrHr value.

Author information
  • Ivanovo State University of Chemistry and Technology, 153000, Ivanovo, RussiaN. N. Kuranova, G. A. Gamov, A. S. Gushchina & V. A. Sharnin
References
  1. G. A. Krestov, V. N. Afanas’ev, A. V. Agafonov, et al., Complexation in Non-Aqueous Solutions (Nauka, Moscow, 1989) [in Russian].
  2. A. A. Chernyavskaya, N. V. Loginova, G. I. Polozov, et al., Pharm. Chem. J. 40, 413 (2006). https://doi.org/10.1007/s11094-006-0141-4
  3. K. Singh, M. S. Barwa, and P. Tyagi, Eur. J. Med. Chem. 41, 147 (2006). https://doi.org/10.1016/j.ejmech.2005.06.006
  4. M. A. Phaniband and S. D. Dhumwad, Trans. Met. Chem. 32, 1117 (2007). https://doi.org/10.1007/s11243-007-0295-2
  5. L. C. Yu, L. Lai, R. Xia, and S. L. Liu, J. Coord. Chem. 62, 1313 (2009). https://doi.org/10.1080/00958970802590667
  6. A. A. Kaya, Z. Demircioglu, E. Celenk Kaya, and O. Buyukgungor, Heterocycl. Commun. 20, 51 (2014). https://doi.org/10.1515/hc-2013-0160
  7. C. A. Elvehjem and L. J. Teply, Chem. Rev. 33, 185 (1943). https://doi.org/10.1021/cr60106a001
  8. K. V. Grazhdan, A. S. Gushchina, S. V. Dushina, et al., Russ. Chem. Bull. 64, 2597 (2015). https://doi.org/10.1007/s11172-015-1195-9
  9. Yu. V. Karyakin and I. I. Angelov, Pure Chemical Reagents (Khimiya, Moscow, 1974) [in Russian].
  10. I. Shumakher, Perchlorates (TNTIKhim, Moscow, 1963) [in Russian].
  11. V. P. Vasil’ev, R. P. Morozova, and L. A. Kochergina, Workshop on Analytical Chemistry (Khimiya, Moscow, 2000) [in Russian].
  12. I. S. Perelygin, L. L. Kimtis, V. I. Chizhik, et al., Experimental Methods in Solution Chemistry: Spectroscopy and Calorimetry, Ed. by G. A. Krestov (Nauka, Moscow, 1995), p. 251 [in Russian].
  13. A. N. Meshkov and G. A. Gamov, Talanta 198, 200 (2019). https://doi.org/10.1016/j.talanta.2019.01.107
  14. N. N. Kuranova, S. V. Dushina, and V. A. Sharnin, Russ. J. Phys. Chem. A 84, 792 (2010). https://doi.org/10.1134/S0036024410050146
  15. M. V. Kilday and V. Marthada, J. Res. NBS 85, 467 (1980). https://doi.org/10.6028/jres.085.027
  16. C. E. Vanderzee and J. A. Swanson, J. Phys. Chem. 67, 285 (1963).
  17. http://webbook.nist.gov/cgi/cbook.cgi?ID=C59676& Units=SI&Mask=80#IR-Spec. Accessed August 5, 2021.
  18. H.-W. Gu, S.-X. Xiao, H.-Y. Xiao, et al., Ind. Eng. Chem. Res. 51, 4797 (2012). https://doi.org/10.1021/ie202891s
  19. D. W. Brown, A. J. Floyd, and M. J. Sainsbury, Organic Spectroscopy (Wiley, New York, 1988).
  20. S. Bayari, A. Atac, and S. Yurdakul, J. Mol. Struct. 655, 163 (2003). https://doi.org/10.1016/S0022-2860(03)00256-4
  21. T. J. Bruno and P. D. N. Svoronos, Handbook of Basic Tables for Chemical Analysis, 3rd ed. (CRC Press, Boca Raton, 2011).
  22. J. R. Allan, N. D. Baird, and A. L. Kassyk, J. Therm. Anal. 16, 79 (1979). https://doi.org/10.1007/BF01909635
  23. H. Icbudak, Z. Heren, D. A. Kose, and H. Necefoglu, J. Therm. Anal. Calorim. 76, 837 (2004). https://doi.org/10.1023/B:JTAN.0000032269.12381.42
  24. C. Semiha, B. Ender, A. Katsuyuki, and C. Emine, Cryst. Res. Technol. 41, 314 (2006). https://doi.org/10.1002/crat.200510580
  25. D. A. Kose and H. Necefoglu, J. Therm. Anal. Calorim. 93, 509 (2008). https://doi.org/10.1007/s10973-007-8712-5
  26. A. Dziewulska-Kulaczkowska, L. Mazur, and W. Ferenc, J. Therm. Anal. Calorim. 96, 255 (2009). https://doi.org/10.1007/s10973-008-9851-z
  27. S. R. Batten and A. R. Harris, Acta Crystallogr., Sect. E 57, m9 (2001). https://doi.org/10.1107/S1600536800018742
  28. P. Koczon, J. Piekut, M. Borawska, and W. Lewandowski, J. Mol. Struct. 651–653, 651 (2003). https://doi.org/10.1016/S0022-2860(03)00146-7
  29. C. G. Efthymiou, A. A. Kitos, C. P. Raptopoulou, et al., Polyhedron 28, 3177 (2009). https://doi.org/10.1016/j.poly.2009.04.015
  30. C. Papatriantafyllopoulou, E. Manessi-Zoupa, A. Escuer, and S. P. Perlepes, Inorg. Chim. Acta 362, 634 (2009). https://doi.org/10.1016/j.ica.2008.02.075
  31. F. A. Al-Saif and M. S. Refat, J. Mol. Struct. 1021, 40 (2012). https://doi.org/10.1016/j.molstruc.2012.04.057
  32. G. Hefter, Y. Marcus, and W. E. Warghone, Chem. Rev. 102, 2773 (2002).
  33. S. F. Ledenkov, V. A. Sharnin, and V. A. Shormanov, Zh. Neorg. Khim. 39, 2028 (1994).
  34. A. S. Kurysheva, V. A. Sharnin, and S. F. Ledenkov, Russ. J. Phys. Chem. A 78, 166 (2004).
  35. V. A. Sharnin, S. V. Dushina, M. A. Zevakin, et al., Inorg. Chim. Acta 362, 437 (2009). https://doi.org/10.1016/j.ica.2008.04.053
  36. C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000).