Examples



mdbootstrap.com



 
Статья
2022

Digital Recording Video System for Control of Laser Radiation Parameters


A. E. ShepelevA. E. Shepelev, A. G. PutilovA. G. Putilov, A. A. AntipovA. A. Antipov
Российский физический журнал
https://doi.org/10.1007/s11182-022-02645-x
Abstract / Full Text

The method for control of the parameters of laser radiation based on its recording in the diffuse reflecting screen plane and subsequent digital processing of the recorded image is described. The corresponding algorithm for determining the spatial laser beam parameters is presented and implemented in software. Experimental approbation has been performed using a digital high speed video system and a solid-state pulsed-periodic laser on an alexandrite (Cr3+:BeAl2O4) crystal. The proposed method is compared with standardized method of radiation recording by a matrix photodetector.

Author information
  • Institute on Laser and Information Technologies of the Russian Academy of Sciences – Branch of Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, Shatura, RussiaA. E. Shepelev, A. G. Putilov, A. V. Osipov & A. A. Antipov
  • Vladimir State University named after A. G. and N. G. Stoletovs, Vladimir, RussiaA. G. Putilov, A. V. Osipov & A. A. Antipov
References
  1. L. I. Green and C. B. Roundy, Photonics, No. 4, 18−21 (2005).
  2. Laser and laser-related equipment – Test method for laser beam widths, divergence angles and beam propagation ratios – Part 1: Stigmatic and simple astigmatic beams, ISO International Standard 11146-1 (2005).
  3. Laser and laser-related equipment – Test method for laser beam widths, divergence angles and beam propagation ratios – Part 2: General astigmatic beams, ISO International Standard 11146-2 (2005).
  4. Laser and laser-related equipment – Test method for laser beam widths, divergence angles and beam propagation ratios – Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test method, ISO International Standard 11146-3 (2005).
  5. Yan Fang Li, Jian Wang, Ning Yang, et al., Opt. Express, 21, No. 13, 15998−16006 (2013).
  6. Kai Han, Wenda Cui, Yi Yang, et al., Int. J. Opt., 2019, No. 6, 1–6 (2019).
  7. N. Vanyushkin, N. Tereshchenko, A. Kostrov, et al., Proc. SPIE, Seventh European Workshop on Optical Fibre Sensors, 11199, 4 pp. (2019).
  8. A. Antipov, E. Artyukh, I. Boganova, et al., Materials of the 7th Int. Conf. “Modern Nanotechnology and Nanophotonics for Science and Production,” Vladimir State University, Vladimir (2018), pp. 75−76.
  9. M. V. Konnik, E. A. Manykin, and S. N. Starikov, Quant. Electron., 40, No. 4, 314 (2010).
  10. Laser Power and Energy Measurement. Laser Beam Analysis, OPHIR (2018).
  11. https://www.swissterahertz.com/rigicamera.
  12. https://pdf.directindustry.com/pdf/xenics/onca-mwir-insb-320/54398-176770.html.
  13. P. Parvin, B. Jaleh, H. R. Zangeneh, et al., Radiat. Meas., 43, S617–S622 (2008).
  14. Xue Leng, in: International Conference on Computer Engineering, Information Science & Application Technology “ICCIA 2016,” Conf. Proc. (2016), pp. 132−134.