Examples



mdbootstrap.com



 
Статья
2017

Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells


S. A. GrigorievS. A. Grigoriev, D. G. BessarabovD. G. Bessarabov, V. N. FateevV. N. Fateev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517030065
Abstract / Full Text

The processes contributing to degradation of characteristics of membrane-electrode assemblies (MEA) of water electrolyzers with solid polymer electrolyte (SPE) are considered. Particularly, the life tests of an electrolysis cell with SPE reveal the migration of platinum from the cathodic active layer and its deposition in membrane’s near-cathode region. In addition to platinum, several other elements (Ti, Ir, Fe, Ni, Si) are detected in the membrane, carried there with the water-reagent from the structural elements of MEA, electrolysis cell, and its outer framing (anodic electrocatalytic layer, half-cells, tubes, water tank-separator, etc.). The observed considerable loss of platinum in the cathodic catalytic layer leads to a decrease in its activity (due to the decrease in concentration of platinum nanoparticles and the loss of their cohesion), while the appearance in the membrane of platinum and other ions that have the lower mobility as compared with hydrogen ions gives rise to modifications in the membrane structure thus increasing the electrolysis potential in the course of life tests.

Author information
  • National Research University “Moscow Power Engineering Institute”, Moscow, 111250, Russia

    S. A. Grigoriev

  • HySA Infrastructure Center of Competence, North-West University, Potchefstroom, 2520, South Africa

    D. G. Bessarabov

  • National Research Centre “Kurchatov Institute”, Kurchatov sq. 1, Moscow, 123182, Russia

    V. N. Fateev

References
  1. Millet, P., Ranjbari, A., de Guglielmo, F., Grigoriev, S.A., and Aupretre, F., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17478.
  2. Chandesris, M., Medeau, V., Guillet, N., Chelghoum, S., Thoby, D., and Fouda-Onana, F., Int. J. Hydrogen Energy, 2015, vol. 40, p. 1353.
  3. Mamat, M.S., Grigoriev, S.A., Dzhus, K.A., Walker, G.S., and Grant, D.M., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7580.
  4. Grigoriev, S.A., Dzhus’, K.A., Bessarabov, D.G., Markelov, V.V., and Fateev, V.N., Elektrokhim. Energetika, 2014, vol. 14, p. 187.
  5. Grigoriev, S.A., Dzhus, K.A., Bessarabov, D.G., and Millet, P., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20440.
  6. Zavodzinski, T.A., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1981.
  7. Nguyen, T.V. and White, R.E., J. Electrochem. Soc., 1993, vol. 140, p. 2178.
  8. Yeager, H.L. and Steck, A., J. Electrochem. Soc., 1981, vol. 123, p. 1880.
  9. Xie, G. and Okada, T., J. Electrochem. Soc., 1995, vol. 142, p. 3057.
  10. Morozov, A.V., Porembskii, V.I., Rozenkevich, M.B., and Fateev, V.N., Zh. Fiz. Khim., 1990, vol. 64, p. 3075.
  11. Haijiang, Wang., Hui, Li, and Xiao-Zi, Yuan, PEM Fuel Cell Failure Mode Analysis, CRC Press, 2012.
  12. Andersen, S., Grahl-Madsen, L., and Skou, E.M., Solid State Ionics, 2011, vol. 192, p. 602.
  13. Grigoriev, S.A., Kuleshov, N.V., Grigoriev, A.S., and Millet, P., J. Fuel Cell Sci. Technol., 2015, vol. 12, p. 031004-1.
  14. Su, H., Bladergroen, B.J., Linkov, V., Pasupathi, S., and Ji, S., Int. J. Hydrogen Energy, 2011, vol. 36, p. 15081.
  15. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O., and Guillet, N., Int. J. Hydrogen Energy, 2011, vol. 36, p. 10474.
  16. Sun, S., Shao, Z., Yu, H., Li, G., and Yi, B., J. Power Sources, 2014, vol. 267, p. 515.
  17. Su, K., Linkov, V., and Bladergroen, B.J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 9601.
  18. Mauritz, K.A. and Moore, R.B., Chem. Rev., 2004, vol. 104, p. 4535.
  19. Berejnov, V., Martin, Z., West, M., Kundu, S., Bessarabov, D., Stumper, J., Susac, D., and Hitchcock, A.P., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 4835.
  20. Millet, P., Pineri, M., and Durand, R., J. Appl. Electrochem., 1989, vol. 19, p. 162.
  21. Kotz, E.R. and Stucki, S., J. Appl. Electrochem., 1987, vol. 17, p. 1190.
  22. Abdel-Aal, H.K. and Husseina, I.A., Int. J. Hydrogen Energy, 1993, vol. 18, p. 553.
  23. Gorynin, K.V. and Chechulin, B.B., Titan v mashinostroenii (Titanium in Machine Building), Moscow: Mashinostroenie, 1990.
  24. Alberola, N.D. and Flandin, L., J. Membr. Sci., 2010, vol. 363, p. 67.
  25. Safronova, E.Yu. and Yaroslavtsev, A.B., Solid State Ionics, 2013, vol. 251, p. 23.
  26. Novikova, S.A. and Yaroslavtsev, A.B., Sorbtsion. Khromatogr. Protsessy, 2008, vol. 8, p. 887.
  27. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Mendeleev Commun., 2010, vol. 20, p. 89.
  28. Novikova, S.A., Safronova, E.Yu., Lysova, A.A., and Yaroslavtsev, A.B., Mendeleev Commun., 2010, vol. 20, p. 156.
  29. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Inorg. Mater., 2010, vol. 46, p. 793.
  30. Collier, A., Wang, H., Yuan, X.Z., Zhang, J., and Wilkinson, D.P., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1838.