Статья
2021

Estimation of Corrosion Rate of AISI 1016 Steel by the Analysis of Polarization Curves and Using the Method of Measuring Ohmic Resistance


K. V. Rybalka K. V. Rybalka , L. A. Beketaeva L. A. Beketaeva , A. D. Davydov A. D. Davydov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521010092
Abstract / Full Text

By the example of the study of AISI 1016 steel corrosion in the HCl solution, the potentialities of various methods for determining the corrosion currents are studied. The corrosion rate of steel without polarization is determined using the method of measuring ohmic resistance of test specimen. It is shown that the iterative method used for the analysis of potentiodynamic curves in the vicinity of corrosion potential avoids the complications that arise when the Tafel extrapolation method is used in the absence of pronounced Tafel sections in these curves.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    K. V. Rybalka, L. A. Beketaeva & A. D. Davydov

References
  1. Gileadi, E. and Kirowa-Eisner, E., Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion, Corros. Sci., 2005, vol. 47, p. 3068.
  2. Harvey, J., Flitt, D., and Schweinsberg, P., A guide to polarization curve interpretation: deconstruction of experimental curves typical of the Fe/H2O/H+/O2 corrosion system, Corros. Sci., 2005, vol. 47, p. 2125.
  3. McCafferty, E., Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 2005, vol. 47, p. 3202.
  4. Poorqasemi, E., Abootalebi, O., Peikari, M., and Haqdar, F., Investigating accuracy of the Tafel extrapolation method in HCl solutions, Corros. Sci., 2009, vol. 51, p. 1043.
  5. Mansfeld, F., The polarization resistance technique for measuring corrosion currents, in Advances in Corrosion Science and Technology, Fontana, G. and Staehle, R.W., Eds., New York: Plenum, 1976, vol. 6, ch. 2, p. 163.
  6. Kaesche, H., Die Korrosion der Metalle, Berlin: Springer, 1979.
  7. Stansbury, E.E. and Buchanan, R.A., Fundamentals of the Electrochemical Corrosion, Materials Park, Ohio: ASM Int., 2000, ch. 6.
  8. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010, ch. 7.
  9. Kelly, R.G., Scully, J.R., Shoesmith, D.W., and Buchheit, R.G., Electrochemical Techniques in Corrosion Science and Engineering. New York: Marcel Dekker, 2003, ch. 2.
  10. Oldham, K.B. and Mansfeld, F., Corrosion rates from polarization curves: a new method, Corros. Sci., 1973, vol. 13, p. 813.
  11. Mansfeld, F., Simultaneous determination of instantaneous corrosion rates and Tafel slopes from polarization resistance measurements, J. Electrochem. Soc., 1973, vol. 120, p. 515.
  12. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Estimation of corrosion current by the analysis of polarization curves: electrochemical kinetics mode, Russ. J. Electrochem., 2014, vol. 50, p. 108.
  13. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Determination of AISI 304 steel corrosion rate in the HCl solutions by the method of measuring specimen ohmic resistance, Russ. J. Electrochem., 2019, vol. 55, p. 920.
  14. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Determination of corrosion current in general corrosion under the conditions of mixed kinetics, Russ. J. Electrochem., 2014, vol. 50, p. 390.
  15. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Cathodic component of corrosion process: polarization curve with two Tafel portions, Russ. J. Electrochem., 2018, vol. 54, p. 456.
  16. Hering, C. and Getmah, F.H., Standard Table of Electrochemical Equivalents and Their Derivatives, New York, 1917.
  17. Nagy, Z. and Thomas, D.A., Effect of mass transport on the determination of corrosion rates from polarization measurements, J. Electrochem. Soc., 1986, vol. 133, p. 2013.