Examples



mdbootstrap.com



 
Статья
2021

Phase Equilibrium, Phase Structure, and Interdiffusion in Polystyrene–Polyphenylmethylsiloxane Polymer Mixtures


A. A. PoteryaevA. A. Poteryaev, A. D. AlievA. D. Aliev, A. E. ChalykhA. E. Chalykh, A. V. ShapaginA. V. Shapagin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421020217
Abstract / Full Text

Comprehensive studies of solubility and diffusion in PS–PPMS systems are performed via optical interferometry, DSC, and SEM. The interdiffusion zones in PS–siloxane oligomer systems are studied for the first time. It is shown that the general tendency of the change in the position of the concentration profile over time is to expand without changing the nature of the dependence. A smooth change in the concentration of the siloxane oligomer in PS is observed in the limits of the solubility region. Generalized state diagrams of PS–polysiloxane systems are constructed. The effect molecular weight has on the position of the branches of the binodal curves is determined. It is shown that the upper critical solution temperature (UCST) grows along with the molecular weight of linear oligomers, while the heterogeneous region expands and the binodal dome shifts to the region of thermal destruction of the compositions. The concentration, temperature, and molecular weight dependences of the diffusion coefficients are determined for each of the studied systems. The apparent activation energies are calculated for diffusion.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991, Moscow, RussiaA. A. Poteryaev, A. D. Aliev, A. E. Chalykh & A. V. Shapagin
References
  1. S. Wang, X. Wang, and Z. Zhang, Eur. Polym. J. 43, 178 (2007).
  2. S. Kawaguchi and K. Ito, in Polymer Particles, Vol. 175 of Advances in Polymer Science (Springer, Berlin, Heidelberg, 2005), p. 299.
  3. L.-I. Atanase and G. Riess, Polym. Int. 60, 1563 (2011).
  4. A. Galia, A. Giaconia, and V. Iaia, J. Polym. Sci., Part A 42, 173 (2004).
  5. I. R. Kamrupi, P. Phukon, and B. K. Konwer, J. Supercrit. Fluid 55, 1089 (2011).
  6. K. A. Shaffer, T. A. Jones, D. A. Canelas, et al., Macromolecules 29, 2704 (1996).
  7. I. A. Gritskova, O. V. Chirikova, O. I. Shchegolikhina, et al., Kolloid. Zh. 57, 30 (1995).
  8. B. Liu, X. Deng, S. Cao, et al., Appl. Surf. Sci. 252, 2235 (2006).
  9. M. Khaddazh, G. I. Litvinenko, and I. A. Gritskova, Polym. Sci. Ser. B 53, 283 (2011).
  10. A. A. Poteryaev, Extended Abstract of Cand. Sci. (Chem.) Dissertation (Moscow, 2018).
  11. A. E. Chalykh, A. I. Zaigatov, V. V. Gromov, and D. P. Korotchenko, ODA-2 Optical Diffiometer: Methodological Guide (IFKhRAN, Moscow, 1996), p. 36 [in Russian].
  12. C. C. Han, Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2001), p. 7455.
  13. H. Stenlund, Three Methods for Solutions of Concentration Dependent Diffusion Coefficient Visilab Signal Technologies (Finland, 2005), p. 6.
  14. D. W. van Krevelen and K. Nijenhuis, Properties of Polymers, 4th ed. (Elsevier Science, Amsterdam, 2009), p. 1030.
  15. L. D. Hall, J. Chem. Phys. 21, 87 (1953).
  16. S. Krause, in Polymer Blends, Ed. by D. R. Paul and S. Newman (Elsevier, Amsterdam, 1978), Vol. 1, Chap. 2, p. 16.
  17. R. Bachus and R. Kimmich, Polymer 24, 964 (1983).