Статья
2022

Bimetallic Alkoxocomplexes of Rhenium, Cobalt, and Nickel as Precursors for Alloys Production


E. S. Kulikova E. S. Kulikova , O. V. Chernyshova O. V. Chernyshova , D. V. Iordan D. V. Iordan , I. A. Mikheev I. A. Mikheev , D. V. Drobot D. V. Drobot
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522020057
Abstract / Full Text

Rhenium alkoxocomplexes (Re4O6(OMe)12) and Re4O6(OPri)10) were obtained by the anodic dissolution of rhenium. The complexes were studied using the IR spectrometry and Energy Dispersive Analysis. Bimetallic rheniumnickel alkoxocomplexes (Re4 – xNixO6(OMe)12, Re4 – xNixO6(OPri)10) and rhenium–cobalt alkoxocomplexes (Re4 – xCoxO6(OMe)12, Re4 – xCoxO6(OPri)10) were synthesized of monometallic alkoxocomplexes and characterized using the IR spectrometry. It is shown that homogeneous bimetallic powder of Re0.79Ni0.21 alloy can be produced of rheniumnickel methylate and isopropylate and the powder of Re0.67Co0.33 alloy, of rhenium–cobalt methylate using the reduction in the hydrogen atmosphere at a temperature of 650°C and a pressure of 5 atm.

Author information
  • National Research Center “Kurchatov Institute”, Moscow, Russia

    E. S. Kulikova

  • MIREA—Russian Technological University, Moscow, Russia

    O. V. Chernyshova & D. V. Iordan

  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

    I. A. Mikheev & D. V. Drobot

References
  1. Palant, A.A., Troshkina, I.D., Chekmarev, A.M., and Kostylev, A.I., Rhenium Technology, Moscow: Galleya-Print, 2015.
  2. Korovin, S.S., Bukin, V.I., Fedorov, P.I., and Reznik, A.M., Rare and Dispersed Elements. Chemistry and Technology (Textbook for Universities), Moscow: MISIS, 2003, vol. 3.
  3. Wrona, A., Staszewski, M., Czepelak, M., Woch, M., Kamińska, M., Osadnik, M., and Kołacz, D., Properties of rhenium-based master alloys prepared by powder metallurgy techniques, Arch. Mater. Sci. Eng., 2010, vol. 45, no. 2, p. 95.
  4. Rhenium: Properties, Uses and Occurrence, James, E., Ed., Nova Sci. Publ., 2017.
  5. Maisel, S.B., Schindzielorz, N., Mottura, A., Reed, R.C., and Muller, S., Nickel–rhenium compound sheds light on the potency of rhenium as a strengthener in high-temperature nickel alloys, Phys. Rev. B, 2014, vol. 90, 094110. https://doi.org/10.1103/PhysRevB.90.094110
  6. Mottura, A. and Reed, R.C., What is the role of rhenium in single crystal superalloys? MATEC Web of Conferences, New York, 2014, vol. 14, p. 1–6. https://doi.org/10.1051/matecconf/20141401001
  7. Huang, M. and Zhu, J., An overview of rhenium effect in single-crystal superalloys, Rare Met., 2016, vol. 35, p. 127. https://doi.org/10.1007/s12598-015-0597-z
  8. John, D.A., Seal, R.R., II, and Polyak, D.E., 2017, Rhenium, ch. P of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. P1–P49. https://doi.org/10.3133/p.p1802P
  9. Schulz, K.J., DeYoung, J.H., Jr., Bradley, D.C., and Seal, R.R., II, Critical mineral resources of the United States–An introduction, ch. A of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. A1–A14. https://doi.org/10.3133/pp1802A
  10. Drobot, D.V. and Kulikova, E.S., Dvi-manganese– Rhenium is the youngest stable element of the Periodic Table, Fine Chem. Technol., 2019, vol. 14, no. 6, p. 17. https://doi.org/10.32362/2410-6593-2019-14-6-17-21
  11. Efanova, E.P., Rhenium—metal of the high-tech industry, Foreign Commercial Information Bulletin, 2016, no. 1, p. 35.
  12. Zientek, M.L., Loferski, P.J., Parks, H.L., Schulte, R.F., and Seal, R.R., II, Platinum-Group Elements, ch. N of Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply, Schulz, K.J., DeYoung, J.H. Jr., Seal, R.R., II, and Bradley, D.C., Eds., US Geolog. Survey Professional Paper, 2017, vol. 1802, p. N1–N91. https://doi.org/10.3133/pp1802N
  13. John, D., Rhenium–A rare metal critical to modern transportation, US Geolog. Survey Fact Sheet, 2014–3101, 2 p. https://doi.org/10.3133/fs20143101
  14. Mehrotra, R.C., Transition-metal alkoxides, Adv. Inorg. Chem., 1983, vol. 326, p. 269–335. https://doi.org/10.1016/s0898-8838(08)60096-3
  15. Kessler, V.G. Alkoxides and alkoxosynthesis, in Comprehensive Inorganic Chemistry II (From Elements to Applications), Reedijk J. and Kenneth Poeppelmeier K., Eds., Elsevier, 2013, vol. 2, ch. 2.16, p. 455. https://doi.org/10.1016/B978-0-08-097774-4.00220-5
  16. Zhao, J., Liu, Y., Fan, M., Long, Y., and Zou, X., From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials, ChemInform. vol. 46, no. 18. https://doi.org/10.1002/chin.201518261
  17. Kessler, V.G., The synthesis and solution stability of alkoxide precursors, in Handbook of SolGel Science and Technology, Klein, L., Aparicio, M., and Jitianu, A., Eds., Springer, Cham., p. 31–80. https://doi.org/10.1007/978-3-319-32101-1_1
  18. Mishra, S. and Daniele, S., Molecular engineering of metal alkoxides for solution phase synthesis of high-tech metal oxide nanomaterials, J. Chem. Eur., 2020, vol. 26, p. 9292. https://doi.org/10.1002/chem.202000534
  19. Xie, S., Gou, J., Liu, B., and Liu, C. Facile preparation of hexagonal cobalt alkoxide for supercapacitor application, Mater. Sci., Energy Technology and Power Engineering III (Mep 2019), 2019, vol. 2154, no. 1. 020066. https://doi.org/10.1063/1.5125394
  20. Pryamilova, E.N., Chernyshova, O.V., and Drobot, D.V., Rhenium anodic dissolution in water-free methanol at different electrochemical parameters, Fine Chem. Technolog., 2012, vol. 7, no. 4, p. 75.
  21. Shcheglov, P.A. and Drobot, D.V., Rhenium alkoxides, Russ. Chem. Bull., 2005, vol. 54, no. 10, p. 2247. https://doi.org/10.1007/s11172-006-0106-5
  22. Petrakova, O.V., Drobot, D.V., and Scheglov, P.A., Synthesis and properties of rhenium complex with n-butanol and i-butanol, Fine Chem. Technolog., 2009, vol. 4, no. 5, p. 97.
  23. Mazilin, I.V. and Drobot, D.V., Properties of rhenium, nickel, cobalt alkoxides and their decomposition products, Fine Chem. Technolog., 2013, vol. 8, no. 3, p. 29.
  24. Shcheglov, P.A., Drobot, D.V., Seisenbaeva, G.A., and Kessler, V.G., The electrochemical synthesis and X-ray single crystal of Re4O6(OiPr)10 – a new rhenium(V,VI) cluster with an unprecendented arrangement of metal–metal bonds, Inorg. Chem. Commun., 2001, vol. 4, no. 5, p. 227. https://doi.org/10.1016/s1387-7003(01)00154-x
  25. Seisenbaeva, G.A., Shevelkov, A.V., Tegenfeldt, J., Kloo, L., Drobot, D.V., and Kessler, V.G., Homo- and hetero-metallic rhenium oxomethoxide complexes with a M4(μ-O)2(μ-OMe)4 planar core—a new family of metal alkoxides displaying a peculiar structural disorder. Preparation and X-ray single crystal study, J. Chem. Soc., Dalton Trans., 2001, no. 19. p. 2762. https://doi.org/10.1039/b103287a
  26. Nikonova, O.A., Kessler, V.G., and Seisenbaeva, G.A., Substitution features in the isomorphous replacement series for metal-organic compounds (NbxTa1 ‒ x)4O2(OMe)14(ReO4)2, x = 0.7, 0.5, 0.3 – Single-source precursors of complex oxides with organized porosity, J. Solid State Chem., 2008, vol. 181, p. 3294. https://doi.org/10.1016/j.jssc.2008.09.003
  27. Kessler, V.G., Seisenbaeva, G.A., Shevelkov, A.V., and Khvorykh, G.V., Synthesis, crystal, molecular and electronic structure of a novel heterobinuclear alkoxide cluster [(MeO)2ReO(μ-OMe)3MoO(OMe)2], J. Chem. Soc., Chem. Commun., 1995, no. 17, p. 1779. https://doi.org/10.1039/C39950001779
  28. Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Canada: Wiley, 2007, p. 598–601. https://doi.org/10.1002/9780470134955.ch31
  29. Rossetti, M.N., Dutta, P.S., Lewis, S.L., Litz, E., Jordan, M., and Vreeland, J.L., Metal alkoxides, apparatus for manufacturing metal alkoxides, related methods and uses thereof, US Patent 9028768B2, 2015.
  30. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, 2006.
  31. Hajba, L., Mink, J., KuËhn, F.E., and Goncëalves, I.S., Raman and infrared spectroscopic and theoretical studies of dinuclear rhenium and osmium complexes, M2(O2CCH3)4X2 (M = Re, Os; X = Cl, Br), Inorgan. Chim. Acta, 2006, vol. 359, p. 4741.
  32. Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (Infrared Spectroscopy of Water), Moscow: Nauka, 1973.
  33. Kozlova, N.I., Kessler, V.G., Turova, N.Ya., and Belokon’, A.I., Mass spectrometric and IR spectral study of molybdenum(VI) alcoholates. Polymerization of alcoholates, Coord. Chem., 1989, vol. 15, no. 11, p. 1524.
  34. Edwards, P.G., Wilkinson, G., Hursthouse, M.B., and Malik, K.M.A., Improved syntheses of tetrachloro-oxorhenium(VI) and chlorotrioxorhenium(VII). Synthesis of alkoxo- and dialkylamido-rhenium compounds. The crystal and molecular structures of di-μ-methoxo-tetramethoxo-μ-oxo-dioxorhenium(VI) (Re–Re), bis[lithium pentaisopropoxo-oxorhenate(VI)–lithiumchloride–tetrahydrofuran(1/1/2)], and trans-tetraphenoxobis(trimethylphosphine)rhenium(IV), J. Chem. Soc., Dalton Trans, 1980, no. 12, p. 2467. https://doi.org/10.1039/DT9800002467
  35. Kessler, V.G., Shevel’kov, A.V., Khvorykh, G.V., Seisenbaeva, G.A., Turova, N.Ya., and Drobot, D.V., Electrochemical synthesis and physicochemical properties of rhenium(V) oxomethylate Re4O2(OMe)16, J. Inorgan. Chem., 1995, vol. 40, no. 9, p. 1477.
  36. Chadha, S.L. and Sharma, V., Alcoholysis of nickel(II) methoxide: Synthesis and characterization of Ni(OCH3)(OCH2CC13), Inorg. Chim. Acta, 1986, vol. 118, no. 2, p. 43.
  37. Slabzhennikov, S.N., Ryabchenko, O.B., and Kuarton L.A., Distinctive and regular features of the IR spectra of transition metal tris(acetylacetonates), Russ. J. Coord. Chem., 2008, vol. 34, no. 7, p. 551. https://doi.org/10.1134/s1070328408070130
  38. Nakamoto, K., McCarthy, P.J., and Martell, A.E., Infrared spectra of metal chelate compounds. III Infrared spectra of acetylacetonates of divalent metals, J. Am. Chem. Soc., 1961, vol. 83, no. 6, p. 1272.
  39. Yiase, S.G., Adejo, S.O., and Iningev, S.T., Manganese(II) and cobalt(II) acetylacetonates as antimicrobial agents, Nigerian Ann. Pure and Appl. Sci., 2018, vol. 1, p. 176. https://doi.org/10.46912/napas.43
  40. Prigent, J. and Joubert, J.-M., The phase diagrams of the ternary systems La–Ni–M (M = Re, Ru, Os, Rh, Ir, Pd, Ag, Au) in the La-poor region, Intermetallics, 2011, vol. 19, no. 3, p. 295. https://doi.org/10.1016/j.intermet.2010.10.016
  41. Shubin, Y.V., Filatov, E.Y., Baidina, I.A., Yusenko, K.V., Zadesenetz, A.V., and Korenev, S.V., Synthesis of [M(NH3)5Cl](ReO4)2 (M = Cr, Co, Ru, Rh, Ir) and investigation of thermolysis products. Crystal structure of [Rh(NH3)5Cl](ReO4)2, J. Struct. Chem., 2006, vol. 47, no. 6, p. 1103. https://doi.org/10.1007/s10947-006-0432-3