Examples



mdbootstrap.com



 
Статья
2020

Gas Transmission Properties of Pd–Ag Membranes Coated with Modifying Layer


I. S. PetrievI. S. Petriev, M. G. BaryshevM. G. Baryshev, K. A. VoroninK. A. Voronin, I. S. LutsenkoI. S. Lutsenko, P. D. PushankinaP. D. Pushankina, G. F. KopytovG. F. Kopytov
Российский физический журнал
https://doi.org/10.1007/s11182-020-02056-w
Abstract / Full Text

The paper proposes the manufacturing methods for modifying coatings for gas-diffusion membranes made of palladium-silver alloy comprising 23% Ag. Highly developed surface structures are synthesized to intensify chemisorption and dissociation and to accelerate the overall process of hydrogen transmission through the membrane. At a 0.6 MPa hydrogen overpressure and 100°C temperature, the density of the hydrogen flow through Pd/Ag23 wt.% membrane with the developed surface is 7 times higher than through the similar membrane without the modifying layer. The analysis of the proposed methods shows that the hydrogen density passing through the membranes with the modifying coating synthesized by a method with the included recrystallization stage, is 1.3 times higher than through the similar membranes synthesized in accordance with the standard procedures. The experiments show that the hydrogen transmission rate can be increased in the surface limited regime by creating a highly developed structure of the membrane surface.

Author information
  • Kuban State University, Krasnodar, RussiaI. S. Petriev, M. G. Baryshev, K. A. Voronin, I. S. Lutsenko, P. D. Pushankina & G. F. Kopytov
References
  1. V. N. Alimov, I. V. Bobylev, A. O. Busnyuk, et al., Int. J. Hydrogen Energ., 43, No. 29, 13318–13327 (2018).
  2. M. R. Rahimpour, F. Samimi, A. Babapoor, et al., Chem. Eng. Process., 121, 24–49 (2017).
  3. S. Pati, R. A. Jat, and N. S. Anand, J. Membrane Sci., 522, 151–158 (2017).
  4. D. Mendes, V. Chibante, and J. M. Zheng, Int. J. Hydrogen Energ., 35, No. 22, 12596–12608 (2010).
  5. I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 58, No. 8, 1044–1048 (2015).
  6. E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energ., 44, 13310–13322 (2019).
  7. A. A. Lytkina, N.V. Orekhova, M. M. Ermilova, et al., Petrol. Chem., 57, No. 13, 1219–1227 (2017).
  8. S. S. Dzhimak, A. A. Basov, N. N. Volchenko, et al., Dokl. Biochem. Biophys., 476, 323–325 (2017).
  9. L. V. Fedulova, A. A. Basov, E. R. Vasilevskaya, et al., Curr. Pharm. Biotechnol., 20, No. 3, 245–253 (2019).
  10. I. S. Petriev, S. N. Bolotin, V. Y. Frolov, et al., Bull. Russ. Acad. Sci., 82, No. 7, 807–810 (2018).
  11. I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 60, 9, 1611–1617 (2018).
  12. B. Zhu, C. H. Tang, H. Y. Xu, et al., J. Memb. Sci., 526, 138–146 (2017).
  13. I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 61, No. 10, 131–135 (2018).
  14. M. J. Den Exter, Palladium Membrane Technology Hydrogen Production, Carbon Capture and Other Application, Woodhead Publishing, Sawston (2015), pp. 43–67.
  15. I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Dokl. Phys., 64, No. 5, 210–213 (2019).