Examples



mdbootstrap.com



 
Статья
2022

Synthesis and biological evaluation of colchicine and thiocolchicine derivatives bearing a Michael acceptor moiety in ring A


E. A. Mol’kovaE. A. Mol’kova, E. S. ShchegravinaE. S. Shchegravina, V. F. OtvaginV. F. Otvagin, N. S. KuzminaN. S. Kuzmina, Yu. B. MalyshevaYu. B. Malysheva, E. V. SvirshchevskayaE. V. Svirshchevskaya, E. A. ZaburdaevaE. A. Zaburdaeva, A. Yu. FedorovA. Yu. Fedorov
Российский химический вестник
https://doi.org/10.1007/s11172-022-3449-7
Abstract / Full Text

A series of colchicine and thiocolchicine derivatives bearing a Michael acceptor moiety in ring A were synthesized. Some of these compounds exhibit cytotoxic activity in the nanomolar range, efficiently disrupt the mitotic spindle, and cause the accumulation of G2/M-phase cells resulting in the development of apoptosis. These derivatives can be covalently bound to the cysteine residues at the colchicine-binding site of tubulin.

Author information
  • N. I. Lobachevsky Nizhny Novgorod State University, 23 prosp. Gagarina, 603950, Nizhny Novgorod, Russian FederationE. A. Mol’kova, E. S. Shchegravina, V. F. Otvagin, N. S. Kuzmina, Yu. B. Malysheva, E. A. Zaburdaeva & A. Yu. Fedorov
  • Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 ul. Miklukho-Maklaya, 117997, Moscow, Russian FederationE. V. Svirshchevskaya
References
  1. J.-P. Gillet, M. M. Gottesman, Methods Mol. Biol., 2010, 596, 47; DOI: https://doi.org/10.1007/978-1-60761-416-6_4.
  2. G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar, Cancers (Basel), 2014, 6, 1769; DOI: https://doi.org/10.3390/cancers6031769.
  3. B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang, B. Baradaran, Adv. Pharm. Bull., 2017, 7, 339; DOI: https://doi.org/10.15171/apb.2017.041.
  4. H. Lage, Cell. Mol. Life Sci., 2008, 65, 3145; DOI: https://doi.org/10.1007/s00018-008-8111-5.
  5. C. Cordon-Cardo, J. P. O’Brien, J. Boccia, D. Casals, J. R. Bertino, M. R. Melamed, J. Histochem. Cytochem., 1990, 38, 1277; DOI: https://doi.org/10.1177/38.9.1974900.
  6. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, M. C. Willingham, Proc. Natl. Acad. Sci., 1987, 84, 7735; DOI: https://doi.org/10.1073/pnas.84.21.7735.
  7. R. Lonsdale, R. A. Ward, Chem. Soc. Rev., 2018, 47, 3816; DOI: https://doi.org/10.1039/c7cs00220c.
  8. P. A. Jackson, J. C. Widen, D. A. Harki, K. M. Brummond, J. Med. Chem., 2017, 60, 839; DOI: https://doi.org/10.1021/acs.jmedchem.6b00788.
  9. Z. Zhao, P. E. Bourne, Drug Discov. Today, 2018, 23, 727; DOI: https://doi.org/10.1016/j.drudis.2018.01.035.
  10. F. Sutanto, M. Konstantinidou, A. Dömling, RSC Med. Chem., 2020, 11, 876; DOI: https://doi.org/10.1039/D0MD00154F.
  11. V. Šermák, V. Dostál, M. Jelínek, L. Libusová, J. Kovář, D. Rösel, J. Brábek, Eur. J. Cell Biol., 2020, 99, 151075; DOI: https://doi.org/10.1016/j.ejcb.2020.151075.
  12. J. Yang, W. Yan, Y. Yu, Y. Wang, T. Yang, L. Xue, X. Yuan, C. Long, Z. Liu, X. Chen, M. Hu, L. Zheng, Q. Qiu, H. Pei, D. Li, F. Wang, P. Bai, J. Wen, H. Ye, L. Chen, J. Biol. Chem., 2018, 293, 9461; DOI: https://doi.org/10.1074/jbc.RA117.001658.
  13. J. Yang, W. Yan, Y. Li, L. Niu, H. Ye, L. Chen, Mol. Pharmacol., 2019, 96, 711; DOI: https://doi.org/10.1124/mol.119.117812.
  14. J. Yang, Y. Wang, T. Wang, J. Jiang, C. H. Botting, H. Liu, Q. Chen, J. Yang, J. H. Naismith, X. Zhu, L. Chen, Nat. Commun., 2016, 7, 12103; DOI: https://doi.org/10.1038/ncomms12103.
  15. B. Shan, J. C. Medina, E. Santha, W. P. Frankmoelle, T.-C. Chou, R. M. Learned, M. R. Narbut, D. Stott, P. Wu, J. C. Jaen, T. Rosen, P. B. M. W. M. Timmermans, H. Beckmann, Proc. Natl. Acad. Sci., 1999, 96, 5686; DOI: https://doi.org/10.1073/pnas.96.10.5686.
  16. A. Dorléans, B. Gigant, R. B. G. Ravelli, P. Mailliet, V. Mikol, M. Knossow, Proc. Natl. Acad. Sci. USA, 2009, 106, 13775; DOI: https://doi.org/10.1073/pnas.0904223106.
  17. R. Bai, D. G. Covell, X.-F. Pei, J. B. Ewell, N. Y. Nguyen, A. Brossi, E. Hamel, J. Biol. Chem., 2000, 275, 40443; DOI: https://doi.org/10.1074/jbc.M005299200.
  18. E. S. Shchegravina, E. V. Svirshchevskaya, S. Combes, D. Allegro, P. Barbier, B. Gigant, P. F. Varela, A. E. Gavryushin, D. A. Kobanova, A. E. Shchekotikhin, A. Y. Fedorov, Eur. J. Med. Chem., 2020, 207, 112724; DOI: https://doi.org/10.1016/j.ejmech.2020.112724.
  19. E. S. Sazanova, I. A. Gracheva, D. Allegro, P. Barbier, S. Combes, E. V. Svirshchevskaya, A. Y. Fedorov, RSC Med. Chem., 2020, 11, 696; DOI: https://doi.org/10.1039/D0MD00060D.
  20. R. B. G. Ravelli, B. Gigant, P. A. Curmi, I. Jourdain, S. Lachkar, A. Sobel, M. Knossow, Nature, 2004, 428, 198; DOI: https://doi.org/10.1038/nature02393.
  21. A. Brossi, A. Muzaffar, M. Chrzanowska, Heterocycles, 1989, 28, 365; DOI: https://doi.org/10.3987/COM-88-S43.
  22. W. Hui, L. Leilei, L. Shuqin, W. Yu, Anal. Lett., 2005, 38, 1967; DOI: https://doi.org/10.1080/00032710500232844.
  23. D. Czerwonka, S. Sobczak, E. Maj, J. Wietrzyk, A. Katrusiak, A. Huczyński, Molecules, 2020, 25, 1180; DOI: https://doi.org/10.3390/molecules25051180.
  24. I. A. Gracheva, E. S. Shchegravina, H. G. Schmalz, I. P. Beletskaya, A. Y. Fedorov, J. Med. Chem., 2020, 63, 10618; DOI: https://doi.org/10.1021/acs.jmedchem.0c00222.
  25. E. S. Shchegravina, A. A. Maleev, S. K. Ignatov, I. A. Gracheva, A. Stein, H.-G. Schmalz, A. E. Gavryushin, A. Zubareva, E. V. Svirshchevskaya, A. Y. Fedorov, Eur. J. Med. Chem., 2017, 141, 51; DOI: https://doi.org/10.1016/j.ejmech.2017.09.055.
  26. Y. V. Voitovich, E. S. Shegravina, N. S. Sitnikov, V. I. Faerman, V. V. Fokin, H.-G. Schmalz, S. Combes, D. Allegro, P. Barbier, I. P. Beletskaya, E. V. Svirshchevskaya, A. Y. Fedorov, J. Med. Chem., 2015, 58, 692; DOI: https://doi.org/10.1021/jm501678w.
  27. N. S. Sitnikov, A. S. Kokisheva, G. K. Fukin, J.-M. Neudörfl, H. Sutorius, A. Prokop, V. V. Fokin, H.-G. Schmalz, A. Y. Fedorov, Eur. J. Org. Chem., 2014, 2014, 6481; DOI: https://doi.org/10.1002/ejoc.201402850.
  28. E. V. Nurieva, N. A. Zefirov, N. Fritsch, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Mendeleev Commun., 2020, 30, 706; DOI: https://doi.org/10.1016/j.mencom.2020.11.005.
  29. S. Y. Bukhvalova, A. A. Maleev, Y. A. Gracheva, Y. V. Voitovich, S. K. Ignatov, E. V. Svirshchevskaya, A. Y. Fedorov, Russ. Chem. Bull., 2019, 68, 2205; DOI: https://doi.org/10.1007/s11172-019-2689-7.
  30. E. V. Nurieva, N. A. Zefirov, N. S. Temnyakova, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull., 2020, 69, 2222; DOI: https://doi.org/10.1007/s11172-020-3025-y.
  31. Y. B. Malysheva, S. Combes, D. Allegro, V. Peyrot, P. Knochel, A. E. Gavryushin, A. Y. Fedorov, Bioorg. Med. Chem., 2012, 20, 4271; DOI: https://doi.org/10.1016/j.bmc.2012.05.072.