Статья
2017

Voltammetric, spectroscopic and thermal investigations of the interaction of levofloxacin with cysteine at physiological pH


Ender Biçer Ender Biçer , Parouke Nuertayi Parouke Nuertayi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517050044
Abstract / Full Text

In this study, levofloxacin (LEVOF) hemihydrate interaction with L-cysteine (RSH) was investigated by using square-wave voltammetry (SWV) in Britton–Robinson (B–R) buffer pH 7.4. Addition of the LEVOF to RSH solution resulted in dropping of the main reduction peak current of RSH (the current of mercurous cysteine thiolate Hg2(RS)2). The vary in the peak current of Hg2(RS)2, after the adding of the LEVOF is indicated an interaction between RSH and LEVOF molecules. Moreover, the interaction between two molecules also confirmed with UV-Vis, FT-IR spectroscopic measurements and thermal analysis data. Binding constant of LEVOF with RSH was calculated by both voltammetric and UV-Vis spectroscopic data.

Author information
  • Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Atakum-Samsun, Turkey

    Ender Biçer & Parouke Nuertayi

References
  1. Kang, S.B., Park, S., Kim, Y.H., and Kim, Y., Heterocycles, 1997, vol. 45, p. 137.
  2. Croom, K.F. and Goa, K.L., Drugs, 2003, vol. 63, p. 2769.
  3. Radi, A., El-Ries, M.A., and Kandil, S., Anal. Chim. Acta, 2003, vol. 495, p. 61.
  4. Sultana, N., Arayne, M.S., Rizvi, S.B.S., Haroon, U., and Mesaik, M.A., Med. Chem. Res., 2013, vol. 22, p. 1371.
  5. Zhang, L.-W. and Zhang, X.-X., Chem. J. Chin. Univ., 2008, vol. 29, p. 694.
  6. https://en.wikipedia.org/wiki/Cysteine. Sited October, 2015.
  7. Amini, M.K., Khrosani, J.H., Khaloo, S.S., and Tangestaninejad, S., Anal. Biochem., 2003, vol. 320, p. 32.
  8. Yosypchuk, B. and Novotny, L., Talanta, 2002, vol. 56, p. 971.
  9. Shahrokhian, S. and Karimi, M., Electrochim. Acta, 2004, vol. 50, p. 77.
  10. Pommerville, J.C., Alcamo’s Fundamentals of Microbiology, 9th ed., London: Jones and Bartlett Publishers, 2011, Ch. 8, p. 240.
  11. Habazettl, J., Allan, M., Jensen, P.R., Sass, H.-J., Thompson, C. J., and Grzesiek, S., P. Natl. Acad. Sci. USA, 2014, vol. 111, p. E5498.
  12. Chiu, M.L., Folcher, M., Griffin, P., Holt, T., and Thompson, C.J., Biochemistry, 1996, vol. 35, p. 2332.
  13. Kikuchi, N., Tsukinaga, M., Endo, W., and Kamijo, K., Jpn. J. Antibiot., 1980, vol. 33, p. 117.
  14. Kirner, W.R., National Research Council (U.S.), Chemical-Biological Coordination Center, First Symposium on Chemical-Biological Correlation, 1950, Washington D.C.: National Academies, 1951, Publication 206, p. 276, 284.
  15. Hooper, D.C., Clin. Infect. Dis., 2001, vol. 32, p. S9.
  16. Seedher, N. and Agarwal, P., J. Lumin., 2010, vol. 130, p. 1841.
  17. Seedher, N. and Agarwal, P., Luminescence, 2013, vol. 28, p. 562.
  18. Dall’Acqua, F., Viola, G., Vedaldi, D., Aloisi, G.G., Elisei, F., Latterini, L., and Passeri, R., Arkivoc, 2007, vol. 8, p. 231.
  19. Soldevila, S., Cuquerella, M.C., and Bosca, F., Chem. Res. Toxicol., 2014, vol. 27, p. 514.
  20. Amjadi, M. and Farzampour, L., J. Lumin., 2014, vol. 145, p. 263.
  21. Huang, F., Dong, C.-Y., Zhang, L.Y., Liu, Y., Guang Pu, Xue Yu, Guang Pu, and Fen Xi, Spectroscopy Spectral Analysis, 2014, vol. 34, p. 1064.
  22. Chen, X.-B., Kang, D.-G., Li, S., Zhao, C.Y., Chen, X.-S., Guang Pu, Xue Yu, Guang Pu, and Fen Xi, Spectroscopy Spectral Analysis, 2005, vol. 25, p. 1451.
  23. Chen, Z.-Z., Feng, F., Yang, W.-J., Liang, W.-J., Li, R.-J., Wang, C., Guang Pu, Xue Yu, Guang Pu, and Fen Xi, Spectroscopy Spectral Analysis, 2008, vol. 28, p. 1612.
  24. Omanović, D. and Branica, M., Croat. Chem. Acta, 1998, vol. 71, p. 421.
  25. Ahmadi, F., Ebrahimi-Dishabi, N., Mansouri, K., and Salimi, F., Res. Pharm. Sci., 2014, vol. 9, p. 367.
  26. Rizk, M., Belal, F., Aly, F.A., and El-Enany, N.M., Talanta, 1998, vol. 46, p. 83.
  27. Heyrovský, M. and Vavřička, S., J. Electroanal. Chem., 1997, vol. 423, p. 125.
  28. Heyrovský, M., Mader, P., Vavřička, S., Veselá, V., and Fedurco, M., J. Electroanal. Chem., 1997, vol. 430, p. 103.
  29. Biçer, E. and Çetinkaya, P., J. Chil. Chem. Soc., 2009, vol. 54, p. 46.
  30. Biçer, E. and Coşkun, E., J. Serb. Chem. Soc., 2007, vol. 72, p. 1003.
  31. Heyrovský, M. and Prokopová, B., Collect. Czech. Chem. Commun., 1997, vol. 62, p. 172.
  32. Prokopová, B. and Heyrovský, M., Bioelectrochem. Bioenerg., 1996, vol. 41, p. 209.
  33. Heyrovský, J. and Kůta, J., Principles of Polarography, New York: Academic Press, 1966, p. 299.
  34. Lienhard, G.E. and Jencks, W.P., J. Am. Chem. Soc., 1966, vol. 88, p. 3982.
  35. Movassagh, B. and Shaygan, P., Arkivoc, 2006, vol. 12, p. 130.
  36. Perlmutter, P., Conjugated Addition Reactions in Organic Synthesis, Oxford: Pergamon, 1992, p. 114.
  37. Clark, J.H., Chem. Rev., 1980, vol. 80, p. 429.
  38. Trost, B.M. and Keely, D.E., J. Org. Chem., 1975, vol. 40, p. 2013.
  39. Nishimura, K., Ono, M., Nagaoka, Y., and Tomioka, K., J. Am. Chem. Soc., 1997, vol. 119, p. 12974.
  40. Quyoom, S., Res. J. Chem. Sci., 2014, vol. 4, p. 32.
  41. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.-L., Delgado, G., Cuevas-Yáñez, E., Alaníz-Lumbreras, D., Duron-Torres, S., and Castaño, V.M., J. Nanomater., 2013, vol. 2013, p. 9.
  42. Kalwar, N.H., Sirajuddin Sherazi, S.T.H., Khaskheli, A.R., Soomro, R.A., and Shah, A., Pak. J. Anal. Environ. Chem., 2013, vol. 14, p. 54.
  43. Patgar, M.B., Nandibewoor, S.T., and Chimatadar, S.A., Cogent Chem., 2015, vol. 1, p. 1088778.
  44. Gunasekaran, S., Rajalakshmi, K., and Kumaresan, S., J. Environ. Nanotechnol., 2013, vol. 2, p. 6.
  45. Shah, S.H., Patel, J.K., and Patel, N.V., Der Pharmacia Sinica, 2010, vol. 1, p. 232.
  46. Baby, B., Harsha, N.S., Jayaveera, K.N., and Abraham, A., Res. Rev.: J. Pharm. Pharmaceutical Sci., 2012, vol. 1, p. 7.
  47. Khatik, G.L., Kumar, R., and Chakraborti, A.K., Org. Lett., 2006, vol. 8, p. 2433.
  48. Jung, H.S., Han, J.H., Pradhan, T., Kim, S., Lee, S.W., Sessler, J.L., Kim, T.W., Kang, C., and Kim, J.S., Biomaterials, 2012, vol. 33, p. 945.
  49. Paukov, I.E., Kovalevskaya, Y.A., and Boldyreva, E.V., J. Therm. Anal. Calorim., 2010, vol. 100, p. 295.
  50. Kitao, H., Wada, C., Moroi, R., and Hakusui, H., Chem. Pharm. Bull., 1995, vol. 43, p. 649.
  51. Fulias, A., Vlase, G., Ledeti, I., and Suta, L.-M., J. Therm. Anal. Calorim., 2015, vol. 121, p. 1087.
  52. Yanez, C., Canete-Rosales, P., Castillo, J.P., Catalan, N., Undabeytia, T., and Morillo, E., PLoS ONE, 2012, vol. 7, p. e41072.
  53. Niu, J.J., Cheng, G.J., and Dong, S.J., Electrochim. Acta, 1994, vol. 39, p. 2455.
  54. Arshad, N., Rashid, N., Absar, S., Abbasi, M.S.A., Saleem, S., and Mirza, B., Cent. Eur. J. Chem., 2013, vol. 11, p. 2040.
  55. Abu-Shqair, I., Diab, N., Salim, R., and Al-Subu, M., Asian J. Appl. Sci., 2013, vol. 1, p. 179.
  56. Jelić, R., Tomović, M., Stojanović, S., Joksović, L., Jakovljević, I., and Djurdjević, P., Monatsh. Chem., 2015, vol. 146, p. 1621.
  57. Liu, S., Zhang, L.-W., and Zhang, X.-X., Anal. Sci., 2006, vol. 22, p. 1515.
  58. Larsen, M.T., Kuhlmann, M., Hvam, M.L., and Howard, K.A., Mol. Cellular Therapies, 2016, vol. 4, p. 1.