Статья
2020

PtCu/C Materials Doped with Different Amounts of Gold as the Catalysts of Oxygen Electroreduction and Methanol Electrooxidation


S. V. Belenov S. V. Belenov , V. S. Men’shchikov V. S. Men’shchikov , A. Yu. Nikulin A. Yu. Nikulin , N. M. Novikovskii N. M. Novikovskii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520080029
Abstract / Full Text

The effect of the amount of gold used as the dopant of PtCu nanoparticles on the structure of PtCuAu/Cu catalysts and their activity in the reactions of oxygen reduction and methanol electrooxidation is studied. The PtCuAu/C materials containing from 3 to 20% of gold are prepared by galvanic displacement of copper atoms by gold atoms on the surface of already prepared PtCu nanoparticles. The addition of 5 at % Au to the composition of nanoparticles doubles their activity in the methanol oxidation and increases their activity in the oxygen reduction by a factor of 1.7 as compared with the commercial Pt/C material JM40. This study confirms that multicomponent platinum-containing nanoparticles supported by a highly disperse carbon material and having gold atoms deposited on their surface show promise as the efficient catalysts for the methanol fuel cells. In contrast, the materials containing 10 at % Au and more are characterized by the presence of gold nanoparticles on the carbon support surface and exhibit the lower catalytic activity as compared with those containing less amounts of gold.

Author information
  • Southern Federal University, Faculty of Chemistry, 344006, Rostov-on-Don, Russia

    S. V. Belenov, V. S. Men’shchikov, A. Yu. Nikulin & N. M. Novikovskii

References
  1. Grinberg, V.A., Kulova, T.L., Maiorova, N.A., Dobrokhotova, Zh.V., Pasynskii, A.A., Skundin, A.M., and Khazova, O.A., Nanostructured catalysts for cathodes of oxygen-hydrogen fuel cells, Russ. J. Electrochem., 2007. vol. 43. p. 75.
  2. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N., Frolova, L.A., Gerasimova, E.V., and Sanginov E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012. vol. 81. p. 191.
  3. Martin, S., Martinez-Vazquez, B., Garcia-Ybarra, P.L., and Castillo, J.L., Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method, J. Power Sources, 2013, vol. 229, p. 179.
  4. Liu, Z.L., Ling, X.Y., Su, X.D., and Lee, J.Y., Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell, J. Phys. Chem., 2004, vol. 108, p. 8264.
  5. Xu, C.X., Hou, J.G., Pang, X.H., Li, X.J., Zhu, M.L., and Tang, B.Y., Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, p. 10489.
  6. Cui, X.Z., Shi, J.L., Zhang, L.X., Ruan, M.L., and Gao, J.H., PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation, Carbon, 2009, vol. 47, p. 186.
  7. Xu, C., Liu, Y., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.
  8. Suntivich, J., Xu, Z.C., Carlton, C.E., Kim, J.Y., Han, B.H., Lee, S.W., Bonnet, N., Marzari, N., Allard, L.F., Gasteiger, H.A., Hamad-Schifferli, K., and Horn, Y.S., Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc., 2013, vol. 135, p. 7985.
  9. Jeon, M.K., Zhang, Y., and McGinn, P.J., A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction, Electrochim. Acta, 2010, vol. 55, p. 5318.
  10. Tarasevich, M.R., Bogdanovskaya, V.A., and Andreev, V.N., PtCoCr/C electrocatalysts for proton-conducting polymer electrolyte fuel cells, Catalysis in Industry, 2014, vol. 6 (3), p. 159.
  11. You, G., Jiang, J., Li, M., Li, L., Tang, D., Zhang, J., Zeng, X.C., and He, R., PtPd(111) surface versus PtAu(111) surface: Which one is more active for methanol oxidation?, ACS Catal., 2018, vol. 8, p. 132.
  12. Xie, X.-W., Lv, J.-J., Liu, L., Wang, A.-J., Feng, J.-J., and Xu, Q.-Q., Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions, Int. J. Hydrogen Energy, 2017, vol. 42, p. 2104.
  13. Feng, Y.-Y., Song, G.-H., Zhang, Q., Hu, H.-S., Feng, M.-Y., Wang, J.-Y., and Kong, D.-S., Catalytic performance of non-alloyed bimetallic PtAu electrocatalysts for methanol oxidation reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 30109.
  14. Bhunia, K., Khilari, S., and Pradhan, D., Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction, Dalton Trans., 2017, vol. 46, p. 15558.
  15. Wang, X., Zhang, L., Gong, H., Zhu, Y., Zhao, H., and Fu, Y., Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions, Electrochim. Acta, 2016, vol. 212, p. 277.
  16. Gatalo, M., Jovanovič, P., Polymeros, G., Grote, J.-P., Pavlišič, A., Ruiz- Zepeda, F., Šelih, V.S., Šala, M., Hočevar, S., Bele, M., Mayrhofer, K.J.J., Hodnik, N., and Gaberšček, M., Positive effect of surface doping with Au on the stability of Pt-based electrocatalysts, ACS Catal., 2016, vol. 6, p. 1630.
  17. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1609.
  18. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, no. 12. p. 1258.
  19. Pryadchenko, V.V., Srabionyan, V.V., Kurzin, A.A., Bulat, N.V., Shemet, D.B., Avakyan, L.A., Belenov, S.V., Volochaev, V.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization, Appl. Catal., A, 2016, vol. 525, p. 226.
  20. Alekseenko, A.A., Belenov, S.V., Menshikov, V.S., and Guterman, V.E., Pt(Cu)/C Electrocatalysts with Low Platinum Content, Russ. J. Electrochem., 2018, vol. 54, p. 415.
  21. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Y., Safronenko, O.I., and Moguchikh, E.A., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3676.
  22. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, p. 102.
  23. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections, J. Electrochem. Soc., 2015, vol. 162, p. 1144.
  24. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Y., and Volochaev, V.A., The relationship between activity and stability of deposited platinum-carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.
  25. Baturina, O.A., Aubuchon, S.R., and Wynne, K.J., Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers, Chem. Mater., 2006, vol. 18, p. 1498.
  26. Stevens, D.A. and Dahn, J.R., Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 2005, vol. 43, p. 179.
  27. Sellin, R., Clacens, Jean-M., and Coutanceau, C., A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system, Carbon, 2010, vol. 48, p. 2244.
  28. Guterman, V.E., Belenov, S.V., Krikov, V.V., Vysochina, L.L., Yohannes, W., Tabachkova, N.Yu., and Balakshina, E.N., Reasons for the differences in the kinetics of thermal oxidation of the support in Pt/C electrocatalysts, J. Phys. Chem., 2014, vol. 118, p. 23835.
  29. Ammam, M. and Bradley Easton, E., PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation, J. Power Sources, 2013, vol. 222, p. 79.
  30. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core–shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.
  31. Wang, Y., Zhou, H., Sun, P., and Chen, T., Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts, J. Power Sources, 2014, vol. 245, p. 663.
  32. Deivaraj, T.C., Chen, W., and Yang Lee, J., Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem., 2003, vol. 13, p. 2555.
  33. Zeng, J., Yang J., Yang, Lee J., and Zhou, W., Preparation of carbon-supported core–shell Au–Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core, J. Phys. Chem. B, 2006, vol. 110, p. 20606.
  34. Lima, A., Coutanceau, C., Léger, J.-M., and Lamy, C., Investigation of ternary catalysts for methanol electrooxidation, J. Appl. Electrochem., 2001, vol. 31, p. 379.