Examples



mdbootstrap.com



 
Статья
2020

Relaxation of Physicochemical Processes during the Chemical Synthesis of Silver Nanoparticles in Reverse Micellar Solutions


V. I. Kuz’minV. I. Kuz’min, A. F. GadzaovA. F. Gadzaov, D. L. TytikD. L. Tytik, S. A. BusevS. A. Busev, V. V. VysotskiiV. V. Vysotskii, O. V. SouvorovaO. V. Souvorova, A. A. RevinaA. A. Revina
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420020193
Abstract / Full Text

The kinetics of optical properties is studied experimentally on an OT Aerosol (dioctyl sulfosuccinate sodium salt)/isooctane/Qr (quercetin)/Ag+) reverse micellar system (RMS) during the chemical synthesis of Ag nanoparticles. The kinetic light optical absorption data acquired for an RMS at a wavelength λ = 432 nm with a chronometric resolution of 0.14 and 1 s are used to calculate the boundaries of the stages of Ag NP formation (at a confidence factor of at least 0.99). The determination of relaxation times (almost-periods) in an RMS allows evaluation of the kinetics parameters at certain stages of the chemical synthesis of NP metals.

Author information
  • Russian Technological University (MIREA), 119454, Moscow, RussiaV. I. Kuz’min & A. F. Gadzaov
  • Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991, Moscow, RussiaD. L. Tytik, S. A. Busev, V. V. Vysotskii, O. V. Souvorova & A. A. Revina
References
  1. F. M. Shemyakin and P. F. Mikhalev, Periodic Physicochemical Processes (Akad. Nauk SSSR, Moscow, 1938) [in Russian].
  2. Encyclopedia of Nanotechnology, Ed. by Bharat Bhushan (Springer, Netherlands, 2012), p. 4427.
  3. S. F. Timashev, Flicker Noise Spectroscopy. Information in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].
  4. V. I. Kuzmin, A. F. Gadzaov, D. L. Tytik, V. V. Vysotskii, S. A. Busev, and A. A. Revina, Colloid. J. 76, 439 (2014).
  5. V. I. Kuz’min, D. L. Tytik, A. F. Gadzaov, et al., Discreteness and Continuity in the Properties of Physicochemical Systems (Nauka, Fizmatlit, Moscow, 2014) [in Russian].
  6. H. Bohr, Fastperiodische Funktionen (Springer, Berlin, Heidelberg, 1932) [in German].
  7. A. Einstein, in Collected Scientific Works (Nauka, Moscow, 1966), Vol. 3, p. 118 [in Russian].
  8. M. Smoluchowski, Naturwissensch. 6, 253 (1918).
  9. Yu. K. Tovbin, Small Systems and the Basics of Thermodynamics (Fizmatlit, Moscow, 2018) [in Russian].
  10. V. I. Kuzmin, A. F. Gadzaov, D. L. Tytik, S. A. Busev, and A. A. Revina, Colloid. J. 77, 458 (2015).
  11. S. J. Farlow, Partial Differential Equations for Scientists and Engineers (Dover, New York, 1993).
  12. A. A. Revina, RF Patent No. 2312741, Byull. Izobret., No. 35 (2007).
  13. E. M. Egorova and A. A. Revina, Colloids Surf., A 73, 87 (2000).
  14. V. I. Kuzmin, A. F. Gadzaov, D. L. Tytik, V. V. Vysotskii, A. A. Revina, S. A. Busev, and O. V. Suvorova, Colloid. J. 79, 346 (2017).
  15. V. I. Kuz’min and A. F. Gadzaov, Elektromagn. Volny Elektron. Sist. 20 (2), 56 (2015).
  16. I. Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences (Freeman, San Francisco, 1980; Nauka, Moscow, 1985).
  17. I. Prigogine and I. K. Stengers, Order out of Chaos: Man’s New Dialog with Nature (Bantam Books, Toronto, 1984).
  18. M. Johnson, Correlations of Cycles in Weather, Solar Activity, Geomagnetic Values and Planetary Configurations (Phillips and Van Orden, San Fransisco, 1944), p. 149.