Examples



mdbootstrap.com



 
Статья
2022

Computational Investigation of Chemisorption of Thiophosgene on Co@B \(_{8}^{ - }\)


Reza GhiasiReza Ghiasi, Zohreh KhanjariZohreh Khanjari, Bita MohtatBita Mohtat
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422020224
Abstract / Full Text

The present research surveyed thiophosgene gas adsorption on Co@B\(_{8}^{ - }\) cluster utilizing MPW1PW91 functional. Seven feasible isomers of interaction between Co@B\(_{8}^{ - }\) cluster and thiophosgene were regarded. The interaction, adsorption and cohesive energy values are measured in these molecules. The interactions between cluster and thiophosgene were investigated through energy decomposition analysis (EDA). Charge transfer between fragments were shown by electrophilicity-based charge transfer (ECT). Thermodynamics parameters of interaction between nano-cluster and thiophosgene gas were computed. QTAIM computations were applied to describe interaction between thiophosgene and Co@B\(_{8}^{ - }\).

Author information
  • Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, IranReza Ghiasi
  • Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, IranZohreh Khanjari & Bita Mohtat
References
  1. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, et al., Acc. Chem. Res. 47, 1349 (2014).
  2. C. Romanescu, T. R. Galeev, W. Li, et al., Acc. Chem. Res. 46, 350 (2013).
  3. W. Li, C. Romanescu, T. R. Galeev, et al., J. Am. Chem. Soc. 134, 165 (2012).
  4. W. W. Li, A. S. Ivanov, J. Federic, et al., J. Chem. Phys. 139, 104312 (2013).
  5. T. R. Galeev, C. Romanescu, W. Li, et al., Angew. Chem., Int. Ed. 51, 2101 (2012).
  6. C. Romanescu, T. R. Galeev, W. Li, A. I. Boldyrev, and L. Wang, Angew. Chem., Int. Ed. 50, 9334 (2011).
  7. T. Heine and G. Merino, Angew. Chem., Int. Ed. 51, 4275 (2012).
  8. Z. Pu, K. Ito, P. v. R. Schleyer, and Q. Li, Inorg. Chem. 48, 10679 (2009).
  9. K. Ito, Z. Pu, Q. Li, and P. v. R. Schleyer, Inorg. Chem. 47, 10906 (2008).
  10. T. Heine and G. Merino, Angew. Chem., Int. Ed. 51, 4275 (2012).
  11. W. Wang, X. Zhang, P. Li, Q. Sun, et al., J. Phys. Chem. A 119, 796 (2015).
  12. C. Ren, W. Wang, C. Guo, et al., RSC Adv. 5, 82524 (2015).
  13. S. Sharma, Synthesis 11, 803 (1978).
  14. I. Schuphan, D. Westphal, A. Haque, and W. Ebing, Am. Chem. Soc. Symp. Ser. 158, 85 (1981).
  15. E. J. Lien, J. Agric. Food Chem. 17, 1265 (1969).
  16. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
  17. R. C. Dunbar, J. Phys. Chem. A 106, 7328 (2002).
  18. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 6655 (2001).
  19. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 4851 (2001).
  20. Y. Zhang, Z. Guo, and X.-Z. You, J. Am. Chem. Soc. 123, 9378 (2001).
  21. S. Grimme, J. Comput. Chem. 25, 1463 (2004).
  22. C. M. Breneman and K. B. Wiberg, J. Comp. Chem. 11, 361 (1990).
  23. M. D. S. Simon and J. J. Dannenberg, J. Chem. Phys. 105, 11024 (1996).
  24. T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).
  25. T. Lu and F. Chen, J. Comp. Chem. 33, 580 (2012).
  26. J. S. Blakemore, Solid State Physics, 2nd ed. (W. B. Saunders, Philadelphia, 1974).
  27. M. Eslami, V. Vahabi, and A. A. Peyghan, Phys. E (Amsterdam, Neth.) 76, 6 (2016).
  28. M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar, Chin. Chem. Lett. 26, 1042 (2015).
  29. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007).
  30. R. G. Pearson, J. Org. Chem. 54, 1430 (1989).
  31. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).
  32. P. Geerlings, F. D. Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).
  33. R. G. Parr, L. Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).
  34. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).