Examples



mdbootstrap.com



 
Статья
2020

Upconversion luminescence of germanate nanophosphors activated by Er3+ and Yb3+ ions


M. G. ZuevM. G. Zuev, V. G. Il’vesV. G. Il’ves, S. Yu. SokovninS. Yu. Sokovnin, A. A. VasinA. A. Vasin, E. G. VovkotrubE. G. Vovkotrub, E. V. BatalovaE. V. Batalova, E. A. ShebuhovaE. A. Shebuhova, E. Yu. ZhuravlevaE. Yu. Zhuravleva
Российский химический вестник
https://doi.org/10.1007/s11172-020-2854-z
Abstract / Full Text

The crystallophores of the composition Sr2La8(1x-y)ErxYbyGe6O26 (x = 0.01, 0.05, 0.075, 0.1, 0.15) were synthesized. Nanophosphores in the amorphous state were obtained for the first time by the method of pulsed electron beam evaporation using a phosphor of the composition Sr2La7.85Er0.075Yb0.075Ge6O26 with the structure of oxyapatites as a target. DSC-TGA analysis was performed to determine the temperature stability and the onset of crystallization of the nanosample. A change in the Raman spectra of the samples with a decrease in the particle dimension from the bulk to nanoscale state was found. The spectral characteristics of the upconversion photoluminescence of samples in polycrystalline and nano-amorphous states are studied. It has been shown that luminescence is influenced by nonradiative processes between different transitions of Er3+ ions. There is a threshold population of the Er3+ and Yb3+ levels (level 2F5/2) in the region of relatively low pumping powers of nanosamples by laser radiation with a wavelength of λex = 980 nm. Above this threshold a sharp increase in the intensity of upconversion photoluminescence occurs.

Author information
  • Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya ul., 620990, Ekaterinburg, Russian FederationM. G. Zuev & A. A. Vasin
  • B. N. Yeltsin Ural Federal University, 19 ul. Mira, 620002, Ekaterinburg, Russian FederationM. G. Zuev, S. Yu. Sokovnin, E. V. Batalova, E. A. Shebuhova & E. Yu. Zhuravleva
  • Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 106 ul. Amundsena, 620016, Ekaterinburg, Russian FederationV. G. Il’ves & S. Yu. Sokovnin
  • Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, 20 ul. Akademiceskaya, 620137, Ekaterinburg, Russian FederationE. G. Vovkotrub
References
  1. Y-C. Li, Y-H. Chang, B-S. Tsai, Y-C. Chen, Y-F. Lin, J. Alloys Comp., 2006, 416, 199.
  2. M. Que, Z. Ci, Y. Wang, G. Zhu, Y. Shi, S. Xin, J. Lumin., 2013, 144, 64.
  3. Q. Wang, Z. Mu, S. Zhang, Q. Zhang, D. Zhu, J. Feng, Q. Du, F. Wu, J. Lumin., 2019, 206, 618.
  4. M. Liao, Z. Mu, S. Zhang, F. Wu, Z. Nie, Z. Zheng, X. Feng, Q. Zhang, J. Feng, D. Zhu, J. Lumin., 2019, 210, 202.
  5. C. C. Lin, R-S. Liu, Introduction to the Basic Properties of Luminescent Materials in Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, Vol. 1, Ed. R.-S. Liu, Springer, Berlin, Heidelberg, 2017, p. 1; DOI: 10.1007/978-3-662-52771-9.
  6. J. Zhou, S. Xu, J. Zhang, J. Qiu, Nanoscale, 2015, 7, 15026.
  7. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Nature Materials, 2011, 10, 968.
  8. S. Yu. Sokovnin, V. G. Il´ves, M. G. Zuev, Production of Complex Metal Oxide Nanopouders Using Pulsed Electron Beam in Low-pressure Gas for Biomaieriats Application, Ch. 2, in Engineering of Nanobiomaterials Applications of Nano bio materials, Vol. 2, Ed. A. Grumezescu, Elsevier, Oxford, 2016, p. 29.
  9. M. G. Zuev, V. G. Il´ves, S. Yu. Sokovnin, A. A. Vasin, I. V. Baklanova, Physics of the Solid State, 2019, 61, 925.
  10. L. Liu, H. Jiang, Y. Chen, X. Zhang, Z. Zhang, Y. Wang, J. Lumin., 2013, 143, 423.
  11. M. G. Zuev, S. Yu. Sokovnin, V. G. Il´ves, I. V. Baklanova, A. A. Vasin, J. Solid State Chem., 2014, 218, 164.
  12. S. Thomas, Silicate and Aluminate Based Dielectric Ceramics for Microwave Communication, National Institute for Inter disciplinary Science and Technology, Thiruvananthapuram, 2010, 248 p.
  13. S. Brunauer, Adsorbzij a gazov i parov [Adsorption of Gases and Vapors], Vol. 1, Fizicheskaja adsobtion [Physical Adsopstion], Publishing House of Foreign Lit., Moscow, 1948, 784 pp.
  14. Powder Diffraction File ICDD PDF-4 PDF2007, card 00-029-0320, Penn State University, Pennsylvania, USA, ICDD Grant-in-Aid, 1976.
  15. L.-M. Peng, S. L. Dudarev, M. J. Whelan, High Energy, Electron Diffraction and Microscopy, University Press, Oxford, 2003, 544 p.
  16. M. G. Zuev, V. G. Il´ves, S. Yu. Sokovnin, I. V. Baklanova, A. A. Vasin, E. Yu. Zhuravleva, J. Lumin., 2017, 188, 31.
  17. E. Rodríguez-Reyna, A. F. Fuentes, M. Maczka, J. Hanuza, K. Boulahya, U. Amador, Solid State Sciences, 2006, 8, 168.
  18. T. N. Ivanova, V. N. Bykov, Russ. Metallurgy (Metally), 2010, 8, 678.
  19. H. Naruke, T. Mori, T. Yamase, Optical Materials, 2009, 31, 1483.
  20. K. Jørgensen, B. R. Judd, Molecular Physics, 1964, 8, 281.