Examples



mdbootstrap.com



 
Статья
2020

A New Redox Technique for Depositing CrOx on the Surface of Pd(0) Nanoparticles: Catalysts for Selective Phenylacetylene Hydrogenation


O. A. KirichenkoO. A. Kirichenko, L. M. KozlovaL. M. Kozlova, G. I. KapustinG. I. Kapustin, E. A. RedinaE. A. Redina
Российский журнал физической химии А
https://doi.org/10.1134/S003602442001015X
Abstract / Full Text

A catalyst containing chromium oxide particles on the surface of palladium nanoparticles is synthesized for the first time using a redox technique for reduction with adsorbed hydrogen. The low-temperature reduction of chromium oxide and formation of palladium hydride is reported for the first time in such catalyst. A considerable difference between its catalytic properties in the selective hydrogenation of phenylacetylene and those of the initial palladium catalyst is shown.

Author information
  • Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaO. A. Kirichenko, L. M. Kozlova, G. I. Kapustin & E. A. Redina
  • Lomonosov Institute of Fine Chemical Technologies, Moscow Technological University, 119454, Moscow, RussiaO. A. Kirichenko
References
  1. B. Coq and F. Figueras, J. Mol. Catal., A 173, 117 (2001).
  2. T. Komatsu, K. Inaba, T. Uezono, et al., Appl. Catal., A 251, 315 (2003).
  3. A. Dasgupta, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.05.048
  4. V. S. Marakatti and S. C. Peter, Prog. Solid State Chem. (2018).https://doi.org/10.1016/j.progsolidstchem.2018.09.001
  5. A. Borgna, B. Moraweck, J. Massardier, et al., J. Catal. 128, 99 (1991).
  6. O. A. Kirichenko, G. I. Kapustin, V. D. Nissenbaum, et al., J. Therm. Anal. Calorim. 118, 749 (2014).
  7. J. Barbier, in Preparation of Solid Catalysts, Ed. by G. Ertl, H. Knozinger, and J. Weitkamp (Wiley-VCH, Weinheim, 1999), p. 526.
  8. O. A. Kirichenko, E. A. Redina, N. A. Davshan, et al., Appl. Catal., B 134–135, 123 (2013).
  9. E. A. Redina, A. A. Greish, I. V. Mishin, et al., Catal. Today 241, 246 (2015).
  10. E. Redina, A. Greish, R. Novikov, et al., Appl. Catal., A 491, 170 (2015).
  11. E. A. Redina, O. A. Kirichenko, A. A. Greish, et al., Catal. Today 246, 216 (2015).
  12. L. M. Kustov, A. L. Tarasov, and O. A. Kirichenko, Int. J. Hydrogen Energy 42, 26723 (2017).
  13. A. A. Shesterkina, O. A. Kirichenko, L. M. Kozlova, et al., Mendeleev Commun. 26, 228 (2016).
  14. A. A. Shesterkina, L. M. Kozlova, O. A. Kirichenko, et al., Russ. Chem. Bull., Int. Ed. 65, 432 (2016).
  15. F. Pinna, M. Signoretto, G. Strukul, et al., React. Kinet. Catal. Lett. 60, 9 (1997).
  16. O. A. Kirichenko, A. A. Strekalova, G. I. Kapustin, and A. A. Shesterkina, Russ. J. Phys. Chem. A 92, 2396 (2018).
  17. O. A. Kirichenko, A. A. Strekalova, G. I. Kapustin, et al., J. Therm. Anal. Calorim. (2019, in press).