Статья
2020

Electrochemical Properties of N-Substituted α-Diphenylphosphinoglycines


O. S. Soficheva O. S. Soficheva , Yu. A. Kislitsyn Yu. A. Kislitsyn , A. A. Nesterova A. A. Nesterova , A. B. Dobrynin A. B. Dobrynin , D. G. Yakhvarov D. G. Yakhvarov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520050109
Abstract / Full Text

The electrochemical properties of the N-substituted α-diphenylphosphinoglycines N-(2-methoxybenzyl) diphenylphosphinoglycine (1), N-(pyrazin-2-yl) diphenylphosphinoglycine (2), N-(1-adamantyl) diphenylphosphinoglycine (3), and N-(2,5-dimethoxycarbonylphenyl) diphenylphosphinoglycine (4) obtained in the three-component condensation of diphenylphosphine, glyoxylic acid hydrate, and the corresponding amine were studied by cyclic voltammetry on a glassy carbon electrode. The structure of compound 4 was confirmed by X-ray diffraction analysis. Compounds 14 exhibited electrochemical activity in the anodic region of potentials due to the presence of an oxidizable diphenylphosphine fragment in the molecule. Compound 4 can also be electrochemically reduced at the cathodic potentials of the working electrode due to the ester groups in the aromatic fragment.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088, Kazan, Russia

    O. S. Soficheva, Yu. A. Kislitsyn, A. A. Nesterova, A. B. Dobrynin & D. G. Yakhvarov

  • Kazan Federal University, 420008, Kazan, Russia

    A. A. Nesterova & D. G. Yakhvarov

References
  1. Chen, C., Designing catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning, Nat. Rev. Chem., 2018, vol. 2, p. 6.
  2. Shamiri, A., Chakrabarti, M., Jahan, S., Hussain, M., Kaminsky, W., Aravind, P., and Yehye, W., The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability, Materials, 2014, vol. 7, p. 5069.
  3. Ittel, S., Johnson, L., and Brookhart, M., Late-Metal catalysts for ethylene homo- and copolymerization, Chem. Rev., 2000, vol. 100, p. 1169.
  4. Lamberti, M., Mazzeo, M., Pappalardo, D., and Pellecchia, C., Mechanism of stereospecific polymerization of α-olefins by late-transition metal and octahedral group 4 metal catalysts, Coord. Chem. Rev., 2009, vol. 253, p. 2082.
  5. Keim, W., Oligomerization of ethylene to α-olefins: Discovery and development of the Shell Higher Olefin Process (SHOP), Angew. Chem. Int. Ed., 2013, vol. 52, p. 12492.
  6. Fomina, O.S., Kislitsyn, Yu.A., Babaev, V.M., Rizvanov, I.Kh., Sinyashin, O.G., Heinicke, J.W., and Yakhvarov, D.G., Electrochemical properties and catalytic activity in the ethylene polymerization processes of nickel complexes with 2,2′-bipyridine in the presence of ortho-phosphinophenol derivatives, Russ. J. Electrochem., 2015, vol. 51, p. 1069.
  7. Peulecke, N., Yakhvarov, D., and Heinicke, J., Chemistry of α-phosphanyl α-amino acids, Eur. J. Inorg. Chem., 2019, p. 1507.https://doi.org/10.1002/ejic.201801130
  8. Fomina, O.S., Yakhvarov, D.G., Heinicke, J.W., and Sinyashin, O.G., Synthesis and catalytic activity of new N-substituted α-diphenylphosphino-α-aminoacids, Uch. Zap., Kazan. Univ.,Ser. Estestv. Nauki, 2012, vol. 154, p. 13.
  9. Heinicke, J., Lach, J., Kockerling, M., Paim, G., Fomina, O., Yakhvarov, D., and Sinyashin, O., Phosphinoglycines—synthesis, structure and reactivity, Phosphorus, Sulfur, and Silicon, 2015, vol. 190, p. 947.
  10. Fomina, O., Heinicke, J., Sinyashin, O., and Yakhvarov, D., The synthesis of novel N-heterocyclic α-diphenylphosphinoglycines, Phosphorus, Sulfur, and Silicon, 2016, vol. 191, p. 1478.
  11. Yakhvarov, D.G., Trofimova, E.A., Rizvanov, I.Kh., Fomina, O.S., and Sinyashin, O.G., Electrochemical synthesis and catalytic activity of organonickel sigma-complexes, Russ. J. Electrochem., 2015, vol. 47, p. 1100.
  12. Yakhvarov, D.G., Tazeev, D.I., Sinyashin, O.G., Giambastiani, G., Bianchini, C., Segarra, A.M., Lonnecke, P., and Hey-Hawkins, E., Electrochemical synthesis of the σ-aryl complex [NiBr(Mes)(bpy)] and its use as catalyst precursor for the oligomerization of ethylene (Mes = 2,4,6-trimethylphenyl, bpy = 2,2'-bipyridine), Polyhedron, 2006, vol. 25, p. 1607.
  13. Yakhvarov, D.G., Budnikova, Yu.G., and Sinyashin, O.G., Organonickel σ-complexes—key intermediates of electrocatalytic cycles, Russ. J. Electrochem., 2003, vol. 39, p. 1261.
  14. Yakhvarov, D.G., Ganushevich, Yu.S., Trofimova, E.A., and Sinyashin, O.G., Electrochemical method for synthesis of organonickel sigma-complexes, RF Patent 2396375, 2010.
  15. Lauw, S., Lee, J., Tessensohn, M., Leong, W., and Webster, R., The electrochemical reduction of di-(2-ethylhexyl) phthalate (DEHP) in acetonitrile, J. Electroanal. Chem., 2017, vol. 794, p. 103.
  16. Schiavon, G., Zecchin, S., and Cogoni, G., Anodic oxidation of triphenylphosphine at a platinum electrode in acetonitrile medium, J. Electroanal. Chem. Interfac. Electrochem., 1973, vol. 48, p. 425.