Examples



mdbootstrap.com



 
Статья
2021

Synthesis of 1,5-diazocin-2-ones


J. P. MathenyJ. P. Matheny, A. V. AksenovA. V. Aksenov, M. RubinM. Rubin
Российский химический вестник
https://doi.org/10.1007/s11172-021-3184-5
Abstract / Full Text

This review is focused on the synthetic approaches to the eight-membered nitrogen heterocycles, 1,5-diazocin-2-ones, exhibiting promising biological activities. Nomenclature of these compounds is considered and the examples of the natural and pharmacologically important compounds of the 1,5-diazocin-2-one family are given. Synthetic approaches towards these compounds in accordance with groups and classes of reactions, as well as cascade transformations were systematically analyzed. The review contains 63 references, covering the period from 1955 to early 2021.

Author information
  • Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045-7582, USAJ. P. Matheny & M. Rubin
  • Department of Chemistry, North Caucasus Federal University, 1a ul. Pushkina, 355009, Stavropol, Russian FederationA. V. Aksenov & M. Rubin
References
  1. M. Denzer, H. Ott, J. Org. Chem., 1969, 34, 183; DOI: https://doi.org/10.1021/jo00838a039.
  2. J. G. Chusid, L. M. Kopeloff, Proc. Soc. Exp. Biol. Med., 1962, 109, 564; DOI: https://doi.org/10.3181/00379727-109-27263.
  3. G. A. Ulett, C. A. Bowers, A. F. Heusler, R. Quick, T. Work, V. Word, J. Neuropsychiatry, 1964, 5, 558.
  4. M. I. Gluckman, Curr. Ther. Res., 1965, 7, 721.
  5. W. Diamantis, M. Kletzkin, Int. J. Neuropharmacol., 1955, 5, 305; DOI: https://doi.org/10.1016/0028-3908(66)90039-6.
  6. G. Dolce, J. Lanoir, Arch. Psychiatr. Nervenkrankh., 1967, 209, 462; DOI: https://doi.org/10.1007/BF01643456.
  7. S. G. Davies, J. E. Thomson, Alkaloids: Chem. Biol., 2015, 74, 121; DOI: https://doi.org/10.1016/bs.alkal.2014.09.001.
  8. L. Crombie, R. C. F. Jones, D. Haigh, Tetrahedron Lett., 1986, 27, 5147; DOI: https://doi.org/10.1016/S0040-4039(00)85156-4.
  9. K. A. Oppong, C. D. Ellis, M. C. Laufersweiler, S. V. O’Neil, Y. Wang, D. L. Soper, M. W. Baize, J. A. Wos, B. De, G. K. Bosch, A. N. Fancher, W. Lu, M. K. Suchanek, R. L. Wang, T. P. Demuth, Jr., Bioorg. Med. Chem. Lett., 2005, 15, 4291; DOI: https://doi.org/10.1016/j.bmcl.2005.06.050.
  10. K. Rudolphi, N. Gerwin, N. Verzijl, P. van der Kraan, W. van den Berg, Osteoarthritis Cartilage, 2003, 11, 738; DOI: https://doi.org/10.1016/S1063-4584(03)00153-5.
  11. Y. Peng, H. Sun, Z. Nikolovska-Coleska, S. Qiu, C. Y. Yang, J. Lu, Q. Cai, H. Yi, S. Kang, D. Yang, S. Wang, J. Med. Chem., 2008, 51, 8158; DOI: https://doi.org/10.1021/jm801254r.
  12. R. Sheng, H. Sun, L. Liu, J. Lu, D. McEachern, G. Wang, J. Wen, P. Min, Z. Du, H. Lu, S. Kang, M. Guo, D. Yang, S. Wang, J. Med. Chem., 2013, 56, 3969; DOI: https://doi.org/10.1021/jm400216d.
  13. G. Illuminati, L. Mandolini, Acc. Chem. Res., 1981, 14, 95; DOI: https://doi.org/10.1021/ar00064a001.
  14. L. Mandolini, Adv. Phys. Org. Chem., 1986, 22, 1; DOI: https://doi.org/10.1016/S0065-3160(08)60167-7.
  15. P. A. Evans, B. Holmes, Tetrahedron, 1991, 47, 9131; DOI: https://doi.org/10.1016/S0040-4020(01)96203-9.
  16. Y. Hirokawa, H. Yamazaki, S. Kato, J. Heterocycl. Chem., 2002, 39, 727; DOI: https://doi.org/10.1002/jhet.5570390417.
  17. C. Ensch, M. Hesse, Helv. Chim. Acta, 2002, 85, 1659; DOI: https://doi.org/10.1002/1522-2675(200206)85:6<1659::AID-HLCA1659>3.0.CO;2-D.
  18. E. Aiello, G. Dattolo, G. Cirrincione, A. M. Almerico, I. D’Asdia, J. Heterocycl. Chem., 1981, 18, 1153; DOI: https://doi.org/10.1002/jhet.5570180618.
  19. I. Stansfield, C. Ercolani, A. Mackay, I. Conte, M. Pompei, U. Koch, N. Gennari, C. Giuliano, M. Rowley, F. Narjes, Bioorg. Med. Chem. Lett., 2009, 19, 627; DOI: https://doi.org/10.1016/j.bmcl.2008.12.068.
  20. G. Illuminati, L. Mandolini, Acc. Chem. Res., 1981, 14, 95; DOI: https://doi.org/10.1021/ar00064a001.
  21. C. Ensch, M. Hesse, Helv. Chim. Acta, 2003, 86, 233; DOI: https://doi.org/10.1002/hlca.200390016.
  22. S. G. Davies, J. A. Lee, P. M. Roberts, J. P. Stonehouse, J. E. Thomson, Tetrahedron Lett., 2012, 53, 1119; DOI: https://doi.org/10.1016/j.tetlet.2011.12.088.
  23. S. G. Davies, J. A. Lee, P. M. Roberts, J. P. Stonehouse, J. E. Thomson, J. Org. Chem., 2012, 77, 7028; DOI: https://doi.org/10.1021/jo3012732.
  24. S. G. Davies, J. A. Lee, P. M. Roberts, J. P. Stonehouse, J. E. Thomson, J. Org. Chem., 2012, 77, 9724; DOI: https://doi.org/10.1021/jo301830j.
  25. A. G. Griesbeck, W. Kramer, T. Heinrich, J. Lex, Photochem. Photobiol. Sci., 2002, 1, 237; DOI: https://doi.org/10.1039/b200448h.
  26. S. Seto, A. Tanioka, M. Ikeda, S. Izawa, Bioorg. Med. Chem., 2005, 13, 5717; DOI: https://doi.org/10.1016/j.bmc.2005.06.015.
  27. Y. Peng, H. Sun, S. Wang, Tetrahedron Lett., 2006, 47, 4769; DOI: https://doi.org/10.1016/j.tetlet.2006.04.053.
  28. Q. Cai, H. Sun, Y. Peng, J. Lu, Z. Nikolovska-Coleska, D. McEachern, L. Liu, S. Qiu, C. Y. Yang, R. Miller, H. Yi, T. Zhang, D. Sun, S. Kang, M. Guo, L. Leopold, D. Yang, S. Wang, J. Med. Chem., 2011, 54, 2714; DOI: https://doi.org/10.1021/jm101505d.
  29. Y. Peng, H. Sun, J. Lu, L. Liu, Q. Cai, R. Shen, C. Y. Yang, H. Yi, S. Wang, J. Med. Chem., 2012, 55, 106; DOI: https://doi.org/10.1021/jm201072x.
  30. H. Sun, J. Lu, L. Liu, C.-Y. Yang, S. Wang, ACS Chem. Biol., 2014, 9, 994; DOI: https://doi.org/10.1021/cb400889a.
  31. J. Chen, L. Bai, D. Bernard, Z. Nikolovska-Coleska, C. Gomez, J. Zhang, H. Yi, S. Wang, ACS Med. Chem. Lett., 2010, 1, 85; DOI: https://doi.org/10.1021/ml100010j.
  32. L. Crombie, R. C. F. Jones, S. Osborne, A. R. Mat-Zin, J. Chem. Soc., Chem. Commun., 1983, 959; DOI: https://doi.org/10.1039/C39830000959.
  33. L. Crombie, R. C. F. Jones, D. Haigh, Tetrahedron Lett., 1986, 27, 5151; DOI: https://doi.org/10.1016/S0040-4039(00)85157-6.
  34. L. Crombie, D. Haigh, R. C. F. Jones, A. R. Mat-Zin, J. Chem. Soc., Perkin Trans. 1, 1993, 2047; DOI: https://doi.org/10.1039/P19930002047.
  35. L. Crombie, D. Haigh, R. C. F. Jones, A. R. Mat-Zin, J. Chem. Soc., Perkin Trans. 1, 1993, 2055; DOI: https://doi.org/10.1039/P19930002055.
  36. J. Ramnauth, M. D. Surman, P. B. Sampson, B. Forrest, J. Wilson, E. Freeman, D. D. Manning, F. Martin, A. Toro, M. Domagala, D. E Awrey, E. Bardouniotis, N. Kaplan, J. Berman, H. W. Pauls, Bioorg. Med. Chem. Lett., 2009, 19, 5359; DOI: https://doi.org/10.1016/j.bmcl.2009.07.094.
  37. P. Pigeon, B. Decroix, J. Heterocycl. Chem., 1997, 34, 375; DOI: https://doi.org/10.1002/jhet.5570340203.
  38. J. A. Martinez-Perez, M. A. Pickel, E. Caroff, W.-D. Woggon, Synlett, 1999, 1875; DOI: https://doi.org/10.1055/s-1999-2969.
  39. R. G. Sherrill, Tetrahedron Lett., 2007, 48, 7053; DOI: https://doi.org/10.1016/j.tetlet.2007.07.083.
  40. M. Yoshida, N. Sassa, T. Kato, S. Fujinami, T. Soeta, K. Inomata, Y. Ukaji, Chem. — Eur. J., 2014, 20, 2058; DOI: https://doi.org/10.1002/chem.201302889.
  41. T. M. T. Tong, T. Soeta, T. Suga, K. Kawamoto, Y. Hayashi, Y. Ukaji, J. Org. Chem., 2017, 82, 1969; DOI: https://doi.org/10.1021/acs.joc.6b02816.
  42. H. Yoshida, E. Shirakawa, Y. Honda, T. Hiyama, Angew. Chem., Int. Ed., 2002, 41, 3247; DOI: https://doi.org/10.1002/1521-3773(20020902)41:17<3247::AID-ANIE3247>3.0.CO;2-P.
  43. N. Saito, K. I. Nakamura, S. Shibano, S. Ide, M. Minami, Y. Sato, Org. Lett, 2013, 15, 386; DOI: https://doi.org/10.1021/ol303352q.
  44. M. Mesgar, O. Daugulis, Org. Lett., 2016, 18, 3910; DOI: https://doi.org/10.1021/acs.orglett.6b01952.
  45. K. C. Majumdar, K. Ray, S. Ganai, Synthesis, 2010, 12, 2101; DOI: https://doi.org/10.1055/s-0029-1218763.
  46. C. Chowdhury, A. Kumar Sasmal, B. Achari, Org. Biomol. Chem., 2010, 8, 4971; DOI: https://doi.org/10.1039/C0OB00217H.
  47. N. Das Adhikary, P. Chattopadhyay, J. Org. Chem., 2012, 77, 5399; DOI: https://doi.org/10.1021/jo3004327.
  48. T. M. A. Barlow, M. Jida, K. Guillemyn, D. Tourwé, V. Caveliers, S. Ballet, Org. Biomol. Chem., 2016, 14, 4669; DOI: https://doi.org/10.1039/C6OB00438E.
  49. G. Kulsi, A. Ghorai, P. Chattopadhyay, Tetrahedron Lett., 2012, 53, 3619; DOI: https://doi.org/10.1016/j.tetlet.2012.05.013.
  50. S. Vézina-Dawod, N. Gerber, X. Liang, E. Biron, Tetrahedron, 2017, 73, 6347; DOI: https://doi.org/10.1016/j.tet.2017.09.028.
  51. A. M. Jones, S. Patterson, M. L. Lorion, A. Slawin, N. J. Westwood, Org. Biomol. Chem., 2016, 14, 8998; DOI: https://doi.org/10.1039/C6OB01566B.
  52. G. Cuny, M. Bois-Choussy, J. Zhu, Angew. Chem., Int. Ed., 2003, 42, 4774; DOI: https://doi.org/10.1002/anie.200351923.
  53. G. Cuny, M. Bois-Choussy, J. Zhu, J. Am. Chem. Soc., 2004, 126, 14475; DOI: https://doi.org/10.1021/ja047472o.
  54. A. Klapars, S. Parris, K. W. Anderson, S. L. Buchwald, J. Am. Chem. Soc., 2004, 126, 3529; DOI: https://doi.org/10.1021/ja038565t.
  55. Y. Liu, Y. Huang, H. Song, Y. Liu, Q. Wang, Chem. — Eur. J., 2015, 21, 5337; DOI: https://doi.org/10.1002/chem.201406617.
  56. T. Abe, K. Kida, K. Yamada, Chem. Commun., 2017, 53, 4362; DOI: https://doi.org/10.1039/C7CC01406F.
  57. Y. Bin Wang, S. C. Zheng, Y. M. Hu, B. Tan, Nat. Commun., 2017, 8, 15489; DOI: https://doi.org/10.1038/ncomms15489.
  58. V. A. Maslivetc, D. N. Turner, K. N. Mcnair, L. Frolova, S. Rogelj, A. A. Maslivetc, N. A. Aksenov, M. Rubina, M. Rubin, J. Org. Chem., 2018, 83, 5650; DOI: https://doi.org/10.1021/acs.joc.8b00640.
  59. A. Edwards, M. Rubina, M. Rubin, Curr. Org. Chem., 2016, 20, 1862; DOI: https://doi.org/10.2174/1385272820666160331235409.
  60. J. E. Banning, J. Gentillon, P. G. Ryabchuk, A. R. Prosser, A. Rogers, A. Edwards, A. Holtzen, I. A. Babkov, M. Rubina, M. Rubin, J. Org. Chem., 2013, 78, 7601; DOI: https://doi.org/10.1021/jo4011798.
  61. V. A. Maslivetc, L. V. Frolova, S. Rogelj, A. A. Maslivetc, M. Rubina, M. Rubin, J. Org. Chem., 2018, 83, 13743; DOI: https://doi.org/10.1021/acs.joc.8b02062.
  62. J. P. Matheny, P. M. Yamanushkin, P. A. Petillo, M. Rubin, RSC Adv., 2020, 10, 44183; DOI: https://doi.org/10.1039/D0RA09014J.
  63. A. V. Smolobochkin, A. S. Gazizov, A. R. Burilov, M. A. Pudovik, O. G. Sinyashin, Russ. Chem. Rev., 2021, 90, 395; DOI: https://doi.org/10.1070/RCR4988.