Статья
2020

Electrochemical Local Maskless Micro/Nanoscale Deposition, Dissolution, and Oxidation of Metals and Semiconductors (A Review)


A. D. Davydov A. D. Davydov , V. M. Volgin V. M. Volgin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520010036
Abstract / Full Text

The review is devoted to the modern methods of local maskless electrochemical machining of metals and semiconductors with the aim of formation of individual islands or cavities, their groups, and patterns according to a given program on their surface, or 3D micro/nanostructures, for example, metal threads and various thread structures. For this purpose, various methods of localizing the electrochemical deposition, dissolution, or oxidation are used.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    A. D. Davydov & V. M. Volgin

  • Tula State University, 300012, Tula, Russia

    V. M. Volgin

References
  1. Electrochemical Microsystem Technologies, Schultze, J.W., Osaka, T., and Datta, M., Eds., London: Taylor & Francis, 2002.
  2. Datta, M. and Landolt, D., Fundamental aspects and applications of electrochemical microfabrication, Electrochim. Acta, 2000, vol. 45, p. 2535.
  3. Bhattacharyya, B., Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology, Oxford: William Andrew, 2015.
  4. Braun, T.M. and Schwartz, D.T., The emerging role of electrodeposition in additive manufacturing, Electrochem. Soc. Interface, 2016, vol. 25, no. 1, p. 69.
  5. Liu, Y., Zeng, Y., and Yu, H., Development of microelectrodes for electrochemical machining, Int. J. Manuf. Technol., 2011, vol. 55, p. 195.
  6. Kim, B.H., Na, C.W., Lee, Y.S., Choi, D.K., and Chu, C.N., Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Annals – Manufacturing Technology, 2005, vol. 54, p. 191.
  7. Wang, Y., Zeng, Y., Qu, N., and Zhu, D., Electrochemical micromachining of small tapered microstructures with sub-micro spherical tool, Int. J. Adv. Manuf. Technol., 2016, vol. 84, p. 851.
  8. Koch, M., Kirchner, V., and Schuter, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.
  9. Sjöström, T. and Su, B., Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 2011, vol. 65, p. 3489.
  10. Maurer, J.J., Mallett, J.J., Hudson, J.L., Fick, S.E., Moffat, T.P., and Shaw, G.A., Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses, Electrochim. Acta, 2010, vol. 55, p. 952.
  11. Park, B.J., Kim, B.H., and Chu, C.N., The effects of tool electrode size on characteristics of micro electrochemical machining, Annals of the CIRP, 2006, vol. 55, p. 197.
  12. Koza, J.A., Sueptittz, R.S., Uhlemann, M., Schutz, L., and Gebert, A., Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique, Intermetallics, 2011, vol. 19, p. 437.
  13. Li, Y., Ma, X., Liu, G., Hu, M., and Yi, F., Research on micro ECM using micro array electrode, Proc. 16th Int. Symp. on Electromachining, Shanghai, China, 2010, p. 335.
  14. Sedykin, F.V., Razmernaya elektrokhimicheskaya obrabotka detalei mashin (Electrochemical Machining of Machine Parts), Moscow: Mashinostroenie, 1976.
  15. Rumyantsev, E. and Davydov, A., Electrochemical Machining of Metals, Moscow: Mir, 1989.
  16. Davydov, A.D., Volgin, V.M., and Lubimov, V.V., Electrochemical machining of metals: fundamentals of electrochemical shaping, Russian J. Electrochem., 2004, vol. 40, p. 1230.
  17. Wang, Z., Zhu, Y., Fan, Z., and Yun, N., Mechanism and process study of ultrasonical vibration combined synchronizing pulse electrochemical micro-machining, Proc. 16th Int. Symp. on Electromachining, Shanghai, China, 2010, p. 351.
  18. Zhitnikov, V.P. and Zaitsev, A.N., Impul’snaya elektrokhimicheskaya razmernaya obrabotka (Pulsed Electrochemical Machining), Moscow: Mashinostroenie, 2008.
  19. Schramm, A., Gesetzmassigkeiten des elektrochemischen abtrags beim kombinierten elektrochemischen/ultraschall-senken, Fertigungstech.Betr., 1985, vol. 35, p. 367.
  20. Allongue, P., Jiang, P., Kirchner, V., Trimmer, A.L., and Schuster, R., Electrochemical micromachining of p-type silicon, J. Phys. Chem. B., 2004, vol. 108, p. 14434.
  21. Trimmer, A.L., Maurer, J.J., Schuster, R., Zangari, G., and Hudson, J.L., All-electrochemical synthesis of submicrometer Cu structures on electrochemically machined p-Si substrates, Chem. Mater., 2005, vol. 17, p. 6755.
  22. Schuster, R., Kirchner, V., Allongue, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 98.
  23. Koch, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.
  24. Kirchner, V., Xia, X., and Schuster, R., Electrochemical nanostructuring with ultrashort voltage pulses, Acc. Chem. Res., 2001, vol. 34, p. 371.
  25. Park, B.J., Kim, B.H., and Chu, C.N., The effects of tool electrode size on characteristics of micro electrochemical machining, Annals of the CIRP, 2006, vol. 55, p. 197.
  26. Madden, J.D., Lafontaine, S.R., and Hunter, I.W., Fabrication by electrodeposition: building 3D structures and polymer actuators, Proc. Sixth Int. Symp. “Micro Machine and Human Science”, Nagoya, Japan, 1995, p. 77.
  27. Madden, J.D. and Hunter, I.W., Three-dimensional microfabrication by localized electrochemical deposition, J. Microelectromech. Syst., 1996, vol. 5, no. 1, p. 24.
  28. Said, R.A., Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling, Nanotechnology, 2003, vol. 14, no. 5, p. 523.
  29. Lin, J.C., Jang, S.B., Lee, D.L., Chen, C.C., Yeh, P.C., Chang, T.K., and Yang, J.H., Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, J. Micromech. Microeng., 2005, vol. 15, no. 12, p. 2405.
  30. Lin, C.S., Lee, C.Y., Yang, J.H., and Huang, Y.S., Improved copper microcolumn fabricated by localized electrochemical deposition, Electrochem. Solid-State Lett., 2005, vol. 8, p. C125.
  31. Seol, S.-K., Pyun, A.-R., Hwu, Y., Margaritondo, G., and Je, J.-H., Localized electrochemical deposition of copper monitored using real-time x-ray microradiography, Adv. Funct. Mater., 2005, vol. 15, p. 934.
  32. Yang, J.H., Lin, J.C., Chang, T.K., You, X.B., and Jiang, S.B., Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, J. Micromech. Microeng., 2009, vol. 19, p. 025015.
  33. Yang, J.H., Lin, J.C., Chang, T.K., Lai, G.Y., and Jiang, S.B., Assessing the degree of localization in localized electrochemical deposition of copper, J. Micromech. Microeng., 2008, vol. 18, p. 055023.
  34. Lin, J.C., Yang, J.H., Chang, T.K., and Jiang, S.B., On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating, Electrochim. Acta, 2009, vol. 54, no. 24, p. 5703.
  35. Lin, J.C., Chang, T.K., Yang, J.H., Chen, Y.S., and Chuang, C.L., Localized electrochemical deposition of micrometer copper columns by pulse plating, Electrochim. Acta, 2010, vol. 55, p. 1888.
  36. Said, R.A., Localized electro-deposition (LED): the march toward process development, Nanotechnology, 2004, vol. 15, p. S649.
  37. Lin, J.C., Chang, T.K., Yang, J.H., Jeng, J.H., Lee, D.L., and Jiang, S.B., Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement, J. Micromech. Microeng., 2009, vol. 19, p. 015030(1–10).
  38. Debnath, S., Laskar, H.R., and Bhattacharyya, B., Investigation into generation of micro features by localised electrochemical deposition, J. Inst. Eng. India Ser. C, 2019, vol. 100, no. 1, p. 113.
  39. Wang, F., Xiao, H., and He, H., Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns, PMC,Scientific Reports, 2016, no. 6, p. 26270. https://doi.org/10.1038/srep26270
  40. Lee, C.-Y., Lin, C.-S., and Lin, B.-R., Localized electrochemical deposition process improvement by using different anodes and deposition directions, J. Micromech. Microeng., 2008, vol. 18, p. 105008.
  41. El-Giar, E.M., U, C., and Thomson, D.J., Localized electrochemical plating of interconnectors for microelectronics, Proc. 1997 Conf. on Communications, Power and Computing WESCANEX’97, Winnipeg, MB, 1997, p. 327.
  42. Jansson, A., Thornell, G., and Johansson, S., High resolution 3D microstructures made by localized electrodeposition of nickel, J. Electrochem. Soc., 2000, vol. 147, no. 5, p. 1810.
  43. Hwang, Y.-R., Lin, J.-C., and Chen, T.-C., The analysis of the deposition rate for continuous micro-anode guided electroplating process, Int. J. Electrochem. Sci., 2012, vol. 7, p. 1359.
  44. Pellicer, E., Pané, S., Panagiotopoulou, V., Fusco, S., Sivaraman, K.M., Suriñach, S., Baró, M.D., Nelson, B.J., and Sort, J., Localized electrochemical deposition of porous Cu–Ni microcolumns: Insights into the growth mechanisms and the mechanical performance, Int. J. Electrochem. Sci., 2012, vol. 7, p. 4014.
  45. Chang, T.K., Lin, J.C., Yang, J.H., Yeh, P.C., Lee, D.L., and Jiang, S.B., Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition, J. Micromech. Microeng., 2007, vol. 17, p. 2336.
  46. Yeo, S.H. and Choo, J.H., Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition, J. Micromech. Microeng., 2001, vol. 11, p. 435.
  47. Wang, F., Bian, H., Wang, F., Sun, J., and Zhu, W., Fabrication of micro copper walls by localized electrochemical deposition through the layer by layer movement of a micro anode, J. Electrochem. Soc., 2017, vol. 164, p. D758.
  48. Wang, F., Sun, J., Liu, D., Wang, Y., and Zhu, W., Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition, J. Electrochem. Soc., 2017, vol. 164, p. D297.
  49. Yeo, S.H., Choo, J.H., and Sim, K.H.A., On the effects of ultrasonic vibrations on localized electrochemical deposition, J. Micromech. Microeng., 2002, vol. 12, p. 271.
  50. Said, R.A., Alshwawreh, N., and Haik, Y., Fabrication of array microstructures using serial and parallel localized electrodeposition, Int. J. Nanosci., 2009, vol. 8, no. 03, p. 323.
  51. Ciou, Y.J., Hwang, Y.R., and Lin, J.C., Theoretical modeling and fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing, Key Eng. Mat., 2015, vol. 656, p. 604.
  52. Brant, A.M., Sundaram, M.M., and Kamaraj, A.B., Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing, J. Manuf. Sci. E.-T. ASME, 2015, vol. 137, no. 1, p. 011018.
  53. Xiao, H., Zeng, P., Ren, X., and Wang, F., Three-dimensional microfabrication of copper column by localized electrochemical deposition, Electronic Packaging Technology (ICEPT), 17th Int. Conference IEEE, 2016, p. 69.
  54. Kamaraj, A., Lewis, S., and Sundaram, M., Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing, Procedia CIRP, 2016, vol. 42, p. 788.
  55. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Modeling of local maskless electrochemical deposition of metal microcolumns, Chem. Eng. Sci., 2018, vol. 183, p. 123.
  56. Ullmann, R., Will, T., and Kolb, D.M., Nanoscale decoration of Au(111) electrodes with Cu clusters by an STM, Chem. Phys. Lett., 1993, vol. 209, p. 238.
  57. Ullmann, R., Will, T., and Kolb, D.M., Nanostructuring of electrode surfaces by tip-induced metal deposition, Ber. Bunsenges. Phys. Chem., 1995, vol. 99, p. 1414.
  58. Engelmann, G.E., Ziegler, J.C., and Kolb, D.M., Electrochemical fabrication of large arrays of metal nanoclusters, Surf. Sci. Lett., 1998, vol. 401, p. L420.
  59. Kolb, D.M., Ullmann, R., and Will, T., Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope, Science, 1997, vol. 275, p. 1097.
  60. Kolb, D.M., Ullmann, R., and Ziegler, J.C., Electrochemical nanostructuring, Electrochim. Acta, 1998, vol. 43, p. 2751.
  61. Engelmann, G.E., Ziegler, J.C., and Kolb, D.M., Nanofabrication of small palladium clusters on Au(111) electrodes with a scanning tunneling microscope, J. Electrochem. Soc., 1998, vol. 145, p. L33.
  62. Hofmann, D., Schindler, W., and Kirschner J., Electrodeposition of nanoscale magnetic structures, Appl. Phys. Lett., 1998, vol. 73, p. 3279.
  63. Schindler, W., Hofmann, D., and Kirschner, J., Nanoscale electrodeposition: A new route to magnetic nanostructures? J. Appl. Phys., 2000, vol. 87, p. 7007.
  64. Schindler, W., Hofmann, D., and Kirschner J., Localized electrodeposition using a scanning tunneling microscope tip as a nanoelectrode, J. Electrochem. Soc., 2001, vol. 148, p. C124.
  65. Spiegel, A., Staemmler, L., Döbeli, M., and Schmuki, P., Selective electrodeposition of Cu nanostructures on focused ion beam sensitized p-Si, J. Electrochem. Soc., 2002, vol. 149, p. C432.
  66. Homma, T., Kubo, N., and Osaka, T., Maskless and electroless fabrication of patterned metal nanostructures on silicon wafers by controlling local surface activities, Electrochim. Acta, 2003, vol. 48, p. 3115.
  67. Choi, J., Chen, Z., and Singh, R.K., A method for selective deposition of copper nanoparticles on silicon surfaces, J. Electrochem. Soc., 2003, vol. 150, p. C563.
  68. Schmuki, P. and Erickson, L.E., Selective high-resolution electrodeposition on semiconductor defect patterns, Phys. Rev. Lett., 2000, vol. 85, p. 2985.
  69. Santinacci, L., Djenizian, T., and Schmuki, P., Atomic force microscopy-induced nanopatterning of Si(100) surfaces, J. Electrochem. Soc., 2001, vol. 148, p. C640.
  70. Pötzschke, R.T., Staikov, G., Lorenz, W.J., and Wiesbeck, W., Electrochemical nanostructuring of n‑Si(111) single-crystal faces, J. Electrochem. Soc., 1999, vol. 146, p. 141.
  71. Ammann, E. and Mandler, D., Local deposition of gold on silicon by the scanning electrochemical microscope, J. Electrochem. Soc., 2001, vol. 148, p. 533.
  72. Oskam, G., Long, J.G., Natarajan, A., and Searson, P.C., Electrochemical deposition of metals onto silicon, J. Phys. D: Appl. Phys., 1998, vol. 31, p. 1927.
  73. Avouris, P., Hertel, T., and Martel, R., Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Appl. Phys. Lett., 1997, vol. 71, p. 285.
  74. Avouris, P., Martel, R., Hertel, T., and Sandstrom, R.L., AFM-tip-induced and current-induced local oxidation of silicon and metals, Appl. Phys. A: Mater. Sci. Process., 1998, vol. 66, p. S659.
  75. Held, R., Heinzel, T., Studerus, P., and Ensslin, K., Nanolithography by local anodic oxidation of metal films using an atomic force microscope, Physica E: Low-Dimensional Systems and Nanostuctures, 1998, vol. 2, p. 748.
  76. Vaccaro, P.O., Sakata, S., Yamaoka, S., Umezu, I., and Sugimura, A., Nano-oxidation of vanadium thin films using atomic force microscopy, J. Mater. Sci. Lett., 1998, vol. 17, p. 1941.
  77. Okur, S., Büyükköse, S., and Tari, S., Scanning probe oxidation lithography on Ta thin films, J. Nanosci. Nanotechnol., 2008, vol. 8, p. 5640.
  78. Matsumoto, K., Takahashi, S., Ishii, M., Hoshi, M., Kurokawa, A., Ichimura, S., and Ando, A., Application of STM nanometer-size oxidation process to planar-type MIM diode, Jpn. J. Appl. Phys., 1995, vol. 34, p. 1387.
  79. Snow, E.S. and Campbell, P.M., Fabrication of Si nanostructures with an atomic force microscope, Appl. Phys. Lett., 1994, vol. 64, p. 1932.
  80. Sugimura, H., Uchida, T., Kitamura, N., and Masuhara, H., Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: a humidity effect on nanolithography, Appl. Phys. Lett., 1993, vol. 63, p. 1288.
  81. Snow, E.S., Park, D., and Campbell, P.M., Single-atom point contact devices fabricated with an atomic force microscope, Appl. Phys. Lett., 1996, vol. 69, p. 269.
  82. Campbell, P.M., Snow, E.S., and McMarr, P.J., Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope, Appl. Phys. Lett., 1995, vol. 66, p. 1388.
  83. Day, H.C. and Allee, D.R., Selective area oxidation of silicon with a scanning force microscope, Appl. Phys. Lett., 1993, vol. 62, p. 2691.
  84. Vullers, R.J.M., Ahlskog, M., and Van Haesendonck, C., Titanium nanostructures made by local oxidation with the atomic force microscope, Appl. Surface Sci., 1999, vol. 144, p. 584.
  85. Sugimura, H., Uchida, T., Kitamura, N., and Masuhara, H., Scanning tunneling microscope tip-induced anodization for nanofabrication of titanium, J. Phys. Chem., 1994, vol. 98, p. 4352.
  86. Wang, D., Tsau, L., Wang, K.L., and Chow, P., Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy, Appl. Phys. Lett., 1995, vol. 67, p. 1295.
  87. Seol, S.K., Kim, D., Lee, S., Kim, J.H., Chang, W.S., and Kim, J.T., Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures, Small, 2015, vol. 11, p. 3896.
  88. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Baniasadi, M., Qian, D., and Minary-Jolandan, M., Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity, J. Appl. Phys., 2017, vol. 121, p. 024903.
  89. Suryavanshi, A.P. and Yu, M.-F., Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires, Nanotechnology, 2007, vol. 18, p. 105305.
  90. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Baniasadi M., Moreno, S., Qian, D., and Minary-Jolandan, M., Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter, J. Appl. Phys., 2017, vol. 121, p. 214305.
  91. Suryavanshi, A.P. and Yu, M.-F., Probe-based electrochemical fabrication of freestanding Cu nanowire array, Appl. Phys. Lett., 2006, vol. 88, p. 083103.
  92. Hu, J. and Yu, M.-F., Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds, Science, 2010, vol. 329, p. 313.
  93. Chen, X., Liu, X., Childs, P., Brandon, N., and Wu, B., A low cost desktop electrochemical metal 3D printer, Adv. Mater. Technol., 2017, vol. 2, p. 1700148.
  94. Momotenko, D., Page, A., Adobes-Vidal, M., and Unwin, P.R., Write-read 3D patterning with a dual-channel nanopipette, ACS Nano, 2016, vol. 10, p. 8871.
  95. Müller, A.D., Müller, F., and Hietschold, M., Electrochemical pattern formation in a scanning near-field optical microscope, Appl. Phys. A: Mater. Sci. Process., 1998, vol. 66, p. S453.
  96. Ito, S. and Iwata, F., Nanometer-scale deposition of metal plating using a nanopipette probe in liquid condition, Jpn. J. Appl. Phys., 2011, vol. 50, p. 08LB15.
  97. Leïchlé, T. and Nicu, L., Copper electrodeposition localized in picoliter droplets using microcantilever arrays, Appl. Phys. Lett., 2006, vol. 88, p. 254108.
  98. Pirani, M. and Schöter, K., Elektrolytische formgebung von harten metallischen gegenständen, Z. Metallkunde, 1924, vol. 16, p. 132.
  99. Lohrengel, M.M., Klüppel, I., Rosenkranz, C., Bettermann, H., and Schultze, J.W., Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochim. Acta, 2003, vol. 48, p. 3203.
  100. Cowper-Coles, S., An electrolytic drilling and slotting process, The Electro-Chemist and Metallurgist, 1903, vol. 3, part 4, p. 203.
  101. Cowper-Coles, S., Electrolytic drilling and slotting process, Electrochemical Industry, 1904, vol. 2, no. 1, p. 28.
  102. Nelson, J.B., Wisecarver, Z., and Schwartz, D.T., Electrochemical printing: mass transfer effects, J. Micromech. Microeng., 2007, vol. 17, p. 1192.
  103. Cole, R.R. and Hopenfeld, Y., An investigation of electrolytic jet polishing at high current densities, J. Eng. Ind., Trans. ASME, 1963, vol. 85, no. 4, p. 395.
  104. Speidel, A., Mitchell-Smith, J., Bisterov, I., and Clare, A.T., The dependence of surface finish on material precondition in electrochemical jet machining, Proc. CIRP, 2018, vol. 68, p. 477.
  105. Li, Q. and Walker, J.D.A., Prediction of electrodeposition rates from an impinging jet, AIChE J., 1996, vol. 42, p. 391.
  106. Mitchell-Smith, J., Speidel, A., and Clare, A.T., Advancing electrochemical jet methods through manipulation of the angle of address, J. Mater. Process. Technol., 2018, vol. 255, p. 364.
  107. Natsu, W., Ikeda, T., and Kunieda, M., Generating complicated surface with electrolyte jet machining, Precis. Eng., 2007, vol. 31, p. 33.
  108. Natsu, W., Ooshiro, S., and Kunieda, M., Research on generation of three-dimensional surface with micro-electrolyte jet machining, CIRP J. Manufact. Sci. Technol., 2008, vol. 1, p. 27.
  109. Kuhn, D., Martin, A., Eckart, C., Sieber, M., Morgenstern, R., Hackert-Oschätzchen, M., Lampke, T., and Schubert, A., Localised anodic oxidation of aluminium material using a continuous electrolyte jet, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 181, p. 012042. https://doi.org/10.1088/1757-899X/181/1/012042
  110. Aerts, T., De Graeve, I., Nelissen, G., Deconinck, J., Kubacki, S., Dick, E., and Terryn, H. Experimental study and modelling of aluminium in a wall-jet electrode set-up in laminar and turbulent regime, Corros. Sci., 2009, vol. 51, p. 1482.
  111. Meltzer, S. and Mandler, D., Microwriting of gold patterns with the scanning electrochemical microscope, J. Electrochem. Soc., 1995, vol. 142, p. L82.
  112. De Abril, O., Mandler, D., and Unwin, P.R., Local cobalt electrodeposition using the scanning electrochemical microscope, Electrochem. Solid-State Lett., 2004, vol. 7, p. C71.
  113. Borgwarth, K. and Heinze, J., Increasing the resolution of the scanning electrochemical microscope using a chemical lens: Application to silver deposition, J. Electrochem. Soc., 1999, vol. 146, p. 3285.
  114. Borgwarth, K., Ricken, C., Ebling, D.G., and Heinze, J., Surface characterisation and modification by the scanning electrochemical microscope (SECM), Ber. Bunsenges. Phys. Chem., 1995, vol. 99, p. 1421.
  115. Mandler, D. and Bard, A., High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope, J. Electrochem. Soc., 1990, vol. 137, p. 2468.
  116. Sheffer, M. and Mandler, D., Scanning electrochemical imprinting microscopy: A tool for surface patterning, J. Electrochem. Soc., 2008, vol. 155, p. D203.
  117. Mandler, D. and Bard, A., Scanning electrochemical microscopy: The application of the feedback mode for high resolution copper etching, J. Electrochem. Soc., 1989, vol. 136, p. 3143.
  118. Sheffer, M. and Mandler, D., Why is copper locally etched by scanning electrochemical microscopy? J. Electroanal. Chem., 2008, vol. 622, p. 115.
  119. Macpherson, J.V., Slevin, C.J., and Unwin, P.R., Probing the oxidative etching kinetics of metals with the feedback mode of the scanning electrochemical microscope, J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 3799.
  120. Cornut, R., Nunige, S., Lefrou, C., and Kanoufi, F., Local etching of copper films by the scanning electrochemical microscope in the feedback mode: A theoretical and experimental investigation, Electrochim. Acta, 2011, vol. 56, p. 10701.
  121. Tian, Z., Fen, Z., Tian, Z., Zhuo, X., Mu, J., Li, C., Lin, H., Ren, B., Xie, Z., and Hu, W., Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy, Faraday Discuss., 1992, vol. 94, p. 37.
  122. Jiang, L.M., Li, W., Attia, A., Cheng, Z.Y., Tang, J., Tian, Z.Q., and Tian, Z.W., A potential method for electrochemical micromachining of titanium alloy Ti6Al14V, J. Appl. Electrochem., 2008, vol. 38, p. 785.
  123. Jiang, L.M., Liu, Z.F., Tang, J., Zhang, L., Shi, K., Tian, Z.Q., Liu, P.K., Sun, L.N., and Tian, Z.W., Three-dimensional micro-fabrication on copper and nickel, J. Electroanal. Chem., 2005, vol. 581, p. 153.
  124. Ma, X.-Z., Zhang, L., Cao, G.-H., Lin, Y., and Tang, J., Electrochemical micromachining of nitinol by confined-etchant-layer technique, Electrochim. Acta, 2007, vol. 52, p. 4191.
  125. Zu, Y., Xie, L., Mao, B., and Tian, Z., Studies on silicon etching using the confined etchant layer technique, Electrochim. Acta, 1998, vol. 43, p. 1683.
  126. Sun, J.J., Huang, H.G., Tian, Z.Q., Xie, L., Luo, J., Ye, X.Y., Zhou, Z.Y., Xia, S.H., and Tian, Z.W., Three-dimensional micromachining for microsystems by confined etchant layer technique, Electrochim. Acta, 2001, vol. 47, p. 95.
  127. Yuan, Y., Han, L., Zhang, J., Jia, L., Zhao, X., Cao, Y., Hu, Z., Yan, Y., Dong, S., Tian, Z.-Q., Tian, Z.-W., and Zhan, D., Electrochemical mechanical micromachining based on confined etchant layer technique, Faraday Discuss., 2013, vol. 164, p. 189.
  128. Hirt, L., Ihle, S., Pan, Z., Dorwling-Carter, L., Reiser, A., Wheeler, J.M., Prolenak, R., Vörös, J., and Zambelli, T., Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition, Adv. Mater., 2016, vol. 28, p. 2311.
  129. Hirt, L., Grüter, R.R., Berthelot, T., Cornut, R., Vörös, J., and Zambelli, T., Local surface modification via confined electrochemical deposition with FluidFM, RSC Adv., 2015, vol. 5, p. 84517.
  130. Tsao, J.Y. and Ehrlich, D.J., Laser-controlled chemical etching of aluminum, Appl. Phys. Lett., 1983, vol. 43, p. 146.
  131. Nowak, R. and Metev, S., Thermochemical laser etching of stainless steel and titanium in liquids, Phys., 1996, vol. A 63, p. 133.
  132. Hsiao, M.C. and Wan, C.C., The investigations of laser-enhanced copper plating on a good heat conducting copper foil, J. Electrochem. Soc., 1991, vol. 138, p. 2273.
  133. Puippe, J.C., Acosta, R.E., and von Gutfeld, R.J., Investigation of laser-enhanced electroplating mechanisms, J. Electrochem. Soc., 1981, vol. 128, p. 2539.
  134. Von Gutfeld, R.J., Tynan, E.E., Melcher, R.L., and Blum, S.E., Laser enhanced electroplating and maskless pattern generation, Appl. Phys. Lett., 1979, vol. 35, p. 651.
  135. Bindra, P., Arbach, G.V., and Stimming, U., On the mechanism of laser enhanced plating of copper, J. Electrochem. Soc., 1987, vol. 134, p. 2893.
  136. Al-Sufi, A.K., Eichler, H.J., and Salk, J., Laser induced copper plating, J. Appl. Phys., 1983, vol. 54, p. 3629.
  137. Eremenko, A.A., Kozlova E.K., Portnyagin A.I., Romanchenko, A.N., and Filippov, A.E., Influence of optical radiation on electroless nickel plating, Soviet J.Quantum Electronics, 1984, vol. 14, no. 8, p. 1129.
  138. Von Gutfeld, R.J. and Hodgson, R.T., Laser enhanced etching in KOH, Appl. Phys. Lett., 1982, vol. 40, p. 352.
  139. Seryanov, Yu.V., Rabkin, V.B., and Surmenko, L.A., Laser-enhanced copper etching in nitric acid solutions, Soviet Electrochem., 1988, vol. 24, p. 842.
  140. Dikusar, A.I., Engelgardt, G.P., and Molin, A.N., Termokineticheskie yavleniya pri vysokoskorostnykh elektrodnykh protsessakh (Thermokinetic Phenomena at High-Rate Electrode Processes), Kishinev: Shtiintsa, 1989, p. 112.
  141. Yung, E.K., Hussey, B.W., Gupta, A., and Romankiw, L.T., Laser-assisted etching of manganese-zinc-ferrite, J. Electrochem. Soc., 1989, vol. 136, p. 665.
  142. Seryanov, Yu.V., Grigor’eva, E.M., Bol’shinskova, T.A., and Fomenko, L.A., Thermal conditions and kinetics of formation of nickel “lines” during laser radiation of NimLnXk films on Al2O3, Fiz. Khim. Obrab. Mater., 1995, no. 1, p. 17.
  143. Zhang, H. and Xu, J., Modeling and experimental investigation of laser drilling with jet electrochemical machining, Chinese J. Aeronautics, 2010, vol. 23, p. 454.
  144. Kuiken, H.K., Mikkers, F.E.P., and Wierenga, P.E., Laser-enhanced electroplating on good heat-conducting bulk materials, J. Electrochem. Soc., 1983, vol. 130, p. 554.
  145. Hsiao, M.C. and Wan, C.C., The effect of pH on the localized etching process induced by laser irradiation, J. Electrochem. Soc., 1994, vol. 141, p. 943.
  146. Dzhunushaliev, V.D. and Chokoev, E.S., Specific features of laser treatment of metal in liquid, Fiz. Khim. Obrab. Mater., 1990, no. 4, p. 140.
  147. Davydov, A.D., Laser electrochemical machining of metals, Russian J. Electrochem., 1994, vol. 30, p. 871.
  148. Kozak, J. and Rajurkar, K.P., Laser assisted electrochemical machining, Trans. NAMRI/SME, 2001, vol. 29, p. 421.
  149. Metev, S.M. and Veiko, V.P., Laser-Assisted Microtechnology, Berlin: Springer, 1998.
  150. Von Gutfeld, R.J., Vigliotti, D.R., and Datta, M., Laser chemical etching of metals in sodium nitrate solution, J. Appl. Phys., 1988, vol. 64, p. 5197.
  151. Efimov, I.O., Krivenko, A.G., and Benderskii, V.A., Laser activation of nickel electrodes, Soviet Electrochemistry, 1988, vol. 24, p. 1092.
  152. Jacobs, J.W.M. and Rikken, J.M.G., Boiling effects and bubble formation at the solid-liquid interface during laser-induced metal deposition, J. Electrochem. Soc., 1987, vol. 134, p. 2690.
  153. Datta, M., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld R.J., Jet and laser-jet electrochemical micromachining of nickel and steel, J. Electrochem. Soc., 1989, vol. 136, p. 2251.
  154. Vagramyan, A.T. and Zhamagortsyants, M.A., Elektroosazhdenie metallov i ingibiruyushchaya adsorbtsiya (Electrodeposition of Metals and Inhibiting Adsorption), Moscow: Nauka, 1969, p. 91.
  155. Shor, J.S., Zhang, X.G., and Osgood, R.M., Laser-assisted photoelectrochemical etching of n-type beta-SiC, J. Electrochem. Soc., 1992, vol. 139, p. 1213.
  156. Lum, R.M., Glass, A.M., Ostermayer, F.W., Kohl, P.A., Ballman, A.A., and Logan, R.A., Holographic photoelectrochemical etching of diffraction gratings in n-InP and n-GaInAsP for distributed feedback lasers, J. Appl. Phys., 1985, vol. 57, p. 39.
  157. Alferov, Zh.I., Goryachev, D.N., Gurevich, S.A., Mizerov, M.N., Portnoi, E.L., and Ryvkin, B.S., Diffraction lattices on the GaAs surface obtained by the method of interference photoetching, J. Technical Physics, 1976, vol. 46, p. 1505.
  158. Belyakov, L.V., Goryachev, D.N., Mizerov, M.N., and Portnoi, E.L., Some characteristics of diffraction lattices obtained by photoetching of semiconductor surface, J. Technical Physics, 1974, vol. 44, p. 1331.
  159. Kautek, W., Sorg, N., and Paatsch, W., Laser-induced electrodeposition of transition metals on silicon, Electrochim. Acta, 1991, vol. 36, p. 1803.
  160. Nánai, L., Hevesi, I., Bunkin, F.V., Luk’yanchuk, B.S., Brook, M.R., Shafeev, G.A., Jelski, D.A., Wu, Z.C., and George, T.F., Laser-induced metal deposition on semiconductors from liquid electrolytes, Appl. Phys. Lett., 1989, vol. 54, p. 736.
  161. Sasano, J., Schmuki, P., Sakka, T., and Ogata, Y.H., Laser-assisted maskless Cu patterning on porous silicon, Electrochem. Solid-State Lett., 2004, vol. 7, p. G98.
  162. Von Gutfeld, R.J., Acosta, R.E., and Romankiw, L.T., Laser-enhanced plating and etching: Mechanisms and applications., IBM J. Res. Develop., 1982, vol. 26, p. 136.
  163. Karlicek, R.F., Donnelly, V.M., and Collins, G.J., Laser-induced metal deposition on InP, J. Appl. Phys., 1982, vol. 53, p. 1084.
  164. Scheck, C., Liu, Y.-K., Evans, P., and Schad, R., Photoinduced electrochemical deposition of Cu on p-type Si substrates, Phys. Rev., 2004, vol. B69, p. 035334 (1–8).
  165. Thietke, J. and Schultze, J.W., Mikroelektrodenprozesse im fokussiierten Laserstrahl. Elektrochemie und Elektronik. Dechema-Monographien, B. 117. VCH Verlagsgesellschaft, 1989, p. 175.
  166. Gelchinski, M.H., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld, R.J., Electrochemical and metallurgical aspects of laser-enhanced jet plating of gold, J. Electrochem. Soc., 1985, vol. 132, p. 2575.
  167. Von Gutfeld, R.J., Gelchinski, M.H., Romankiw, L.T., and Vigliotti, D.R., Laser-enhanced jet plating: A method of high-speed maskless patterning, Appl. Phys. Lett., 1983, vol. 43, p. 876.
  168. Zouari, I., Pierre, C., Lapicque, F., and Calvo, M., Maskless zinc electrodeposition assisted by pulsed laser beam, J. Appl. Electrochem., 1993, vol. 23, p. 863.
  169. Gusev, V.E., Kozlova, E.K., and Portnyagin, A.I., Role of thermal gradient effects in laser electrochemistry, Soviet J.Quantum Electronics, 1987, vol. 17, no. 2, p. 195.
  170. Zouari, I., Lapique, F., Calvo, M., and Cabrera, M., Zink electrodeposition assisted by pulsed YAG laser beam: Effect of hydrodynamic conditions, J. Electrochem. Soc., 1992, vol. 139, p. 2163.
  171. Datta, M., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld, R.J., Laser etching of metals in neutral salt solutions, Appl. Phys. Lett., 1987, vol. 51, p. 2040.
  172. Hsiao, M.C. and Wan, C.C., The effect of pH on the localized etching process induced by laser irradiation, J. Electrochem. Soc., 1994, vol. 141, p. 943.