Статья
2018

The Mechanical Properties and Rate of Electrodeposition of Co−W Alloys from a Boron−Gluconate Bath: Impact of Anodic Processes


V. V. Danil’chuk V. V. Danil’chuk , S. A. Silkin S. A. Silkin , A. V. Gotelyak A. V. Gotelyak , V. A. Buravets V. A. Buravets , T. F. Mitina T. F. Mitina , A. I. Dikusar A. I. Dikusar
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130116
Abstract / Full Text

The effects the anode material has on the rate of electrodeposition (current efficiency) and microhardness of Co–W alloys deposited from a boron–gluconate bath are studied in a broad range of bath ages Q (A h/L). We use nonconsumable (platinum and graphite) and consumable (tungsten, cobalt–tungsten) anodes. With the cobalt–tungsten double anode, the total concentration of W and Co species in the bath is maintained constant during electrodeposition. We find that, as Q increases, the anodic processes have a significant impact on both the rate of deposition and microhardness of the prepared coatings. Departing from the mechanism of induced codeposition in which the first stage is the formation of an intermediate species of the metal component that induces codeposition (Co), here we propose a model that takes into account the effects associated with the anodic processes. In this model, along with reduction at the cathode to give an alloy, this metal component can undergo oxidation at the anode.

Author information
  • Shevchenko Pridnestrovie State University, Tiraspol, MD-3300, Moldova

    V. V. Danil’chuk, S. A. Silkin, A. V. Gotelyak & A. I. Dikusar

  • Kostroma State University, Kostroma, 156005, Russia

    S. A. Silkin

  • Institute of Applied Physics, Academy of Sciences of Moldova, Chişinău, MD-2028, Moldova

    V. A. Buravets & A. I. Dikusar

  • Institute of Chemistry, Academy of Sciences of Moldova, Chişinău, MD-2028, Moldova

    T. F. Mitina

References
  1. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., and Podlaha-Murphy, E.J., Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals, Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, p. 491.
  2. Eliaz, N. and Gileadi, E., Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, Modern Aspects of Electrochemistry, 2008, vol. 42, p. 491.
  3. Tsyntsaru, N., Cesiulis, H., Pellicer, E., Celis, J.-P., and Sort, J., Structural, magnetic, and mechanical properties of electrodeposited cobalt-tungsten alloys: Intrinsic and extrinsic interdependencies, Electrochim. Acta, 2013, vol. 104, p. 94.
  4. Tsyntsaru, N., Belevsky, S., Dikusar, A., and Celis, J.-P., Tribological Behaviour of Electrodeposited Cobalt-Tungsten Coatings: Dependence on Current Parameters, Trans. Inst. Metal Finish, 2008, vol. 86, p. 301.
  5. Capel, H., Shipway, P.H., and Harris, S.J., Sliding Wear Behavior of Electrodeposited Cobalt−Tungsten and Cobalt–Tungsten–Iron Alloys, Wear, 2003, vol. 255, p. 917.
  6. Weston, D.P., Shipway, P.H., Harris, S.J., and Cheng, M.K., Friction and Sliding Wear Behaviour of Electrodeposited Cobalt and Cobalt–Tungsten Alloy Coatings for Replacement of Electrodeposited Chromium, Wear, 2009, vol. 267, p. 934.
  7. Weston, D.P., Harris, S.J., Capel, H., Ahmed, N., Shipway, P.H., and Yellup, J.M., Nanostructured Co‒W Coatings Produced by Electrodeposition to Replace Hard Cr on Aerospace Components, Trans. Inst. Metal Finish, 2010, vol. 88, p. 47.
  8. Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., and Yap, G.N., Establishing Relationships Between Bath Chemistry, Electrodeposition and Microstructure of Co–W alloy Coatings Produced from a Gluconate Bath, Electrochim. Acta, 2010, vol. 55, p. 5695.
  9. Weston, D.P., Gill, S.P.A., Fay, M., Harris, S.J., Yap, G.N., Zhang, D., and Dinsdale, K., Nano-structure of Co–W Alloy Electrodeposited from Gluconate Bath, Surf. Coat. Technol., 2013, vol. 236, p. 75.
  10. Belevskii, S.S., Bobanova, Z.I., Buravets, V.A., Gotelyak, A.V., Danil’shuk, V.V., Silkin, S.A., and Dikusar, A.I., Electrodeposition of Co–W Coatings from Boron Gluconate Electrolyte with a Soluble Tungsten Anode, Russ. J. Appl. Chem., 2016, vol. 89, p. 1427.
  11. Gotelyak, A.V., Danil’shuk, V.V., Dikusar A.I., and Silkin, S.A., Electrodeposition of Co–W Covers from Gluconate Electrolyte in Hull’Cell with Rotating Cylindrical Electrode, Izv. Vyssh. Uchebn. Zaved. Seriya Khimiya i Khimicheskaya Tekhnologiya, 2014, vol. 57, no. 6, p. 78.
  12. Gotelyak, A.V., Silkin, S.A., Yahova, E.A., and Dikusar, A.I., Effect of pH and Volume Current Density On Deposition Rate and Microhardness of Co−W Coatings Electrodeposited from Concentrated Boron−Gluconate Electrolyte, Russ. J. Appl. Chem., 2017, vol. 90, p. 541.
  13. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Size Effect of Microhardness of Nanocrystalline Co–W Coatings Produced from Citrate and Gluconate Solutions, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, p. 228.
  14. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Electrodeposition of Alloys of the Iron Group Metals with Tungsten from Citrate and Gluconate Solutions: Size Effect of Microhardness, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, p. 7.
  15. Gamburg, Yu.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer, 2011.
  16. Kabanda, A., Sobol’, O.E., Kukushkina, K., Yarlykov, M.M., and Kudryavtsev, V.N., Elektrokhimichesloe povedenie rastvorimukh anodov v tsitranto-ammiachnykh elektrolitakh electroosazhdeniya splava nikel’-volfram (Electrochemical Behavior of Soluble Anodes in Citrate−Ammonia Electrolytes for Electrodeposition of Nickel−Tungsten Alloy), Galvanotekhnika i Obrabokta Poverkhnosti, 1998, no. 3, p. 24.
  17. Belevskii, S.S., Buravets, V.A., Yushchenko, S.P., Zgardan, I.M., and Dikusar, A.I., Gel–Chromatographic Separation of Boron−Gluconate Electrolyte for Obtaining Nano-Crystalline Co–W Coatings: Composition and Electrochemical Activity of Components. Part I. Gel-Chromatographic study of electrolyte, separation and composition of components, Surf. Eng. Appl. Electrochem., vol. 52, no. 4, p. 350.
  18. Shul’man, A.I., Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Role of Complexation in Forming Composition of Co–W Coatings Electrodeposited from Gluconate Electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50. no. 1, p. 9.
  19. Podlaha E.J. and Landolt, D., Induced Codeposition I. An Experimental Investigation of Ni–Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, p. 885.
  20. Podlaha, E.J. and Landolt, D., Induced Codeposition II. A Mathematical Model Describing the Electrodeposition of Ni–Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, p. 893.
  21. Krasikov, V.L., The Role of Intermediate Particles of Electrochemical Reduction of Cobalt in the Formation of Oxygen−Containing Impurities, Bulletin SPbSTI (TU), 2015, no. 31, p. 40.
  22. Krasikov, V.L. and Krasikov, A.V., Mechanism of Nickel–Tungsten Alloy Electrodeposition from Pyrophosphate Electrolyte, Bulletin SPbSTI (TU), 2016, no. 36, p. 12.
  23. Krasikov, A.V. and Krasikov, V.L., Mechanism for Induced Codeposition of Alloys and Some Single Refractory Metals, Bulletin SPbSTI (TU), 2016, no. 37, p. 8.
  24. Belevskii, S.S., Buravets, V.A., Yushcenko, S.P., and Dikusar, A.I., Gel-chromatographic Separation of Boron–Gluconate Electrolyte for Obtaining Nanocrystalline Co–W Coatings: Composition and Electrochemical Activity of Components. Part II. Electrochemical Activity of Separation Products and their Role in the Process of Manufacturing the Alloy, Surf. Eng. Appl. Electrochem., 2016, vo. 52, no. 5, p. 420.
  25. Cesiulis, H. and Budreika, A., Electroreduction of Ni(II) and Co(II) from Pyrophosphate Solutions, Materials Sci. (Medziagotuza), 2010, vol. 16, no. 1, p. 52.
  26. Krasikov, A.V. and Krasikov, V.L., Mechanism of Cathodic Reduction of Cobalt Pyrophosphate Complex, Russ. J. Appl. Chem., 2012, vol. 85, p. 736.
  27. Lopez-Estrada, S.A., Alatone-Ordaz, A., and Gutierrez- Granados, S., Ponce-de-Leon, C., and Walsh, F.C., Electrochemical Study of Co(II)/Co(III) on Different Electrode Materials for Energy Storage in Redox Flow Cells, ECS Transactions, 2009, vol. 20, no. 1, p. 237.