Examples



mdbootstrap.com



 
Статья
2017

Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification


V. I. Vasil’eva V. I. Vasil’eva , E. M. Akberova E. M. Akberova , V. I. Zabolotskii V. I. Zabolotskii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040127
Abstract / Full Text

It is found that the variations in the structure (morphology and microrelief) and chemical composition of surface of heterogeneous ion-exchange membranes as a result of thermal modification have different effects on the current—voltage characteristics and conditions for the generation of electroconvective instability at the membrane/solution interface under intense current modes. After thermal treatment of strongly acidic sulfocation-exchange membrane, which is characterized by a low catalytic activity in the reaction of water dissociation and a high thermal stability of fixed groups, a fraction of conducting surface area increases and the membrane microrelief develops. As a result, the diffusion limiting current density increases and the length of plateau of the current—voltage curve decreases. Therewith, the thickness of the region of electroconvective instability of solution in the near-membrane region increases and the polarization of electromembrane system, at which the mode of unstable electroconvection is reached, decreases. The thermodestruction of strongly basic anion-exchange membranes, conversely, leads to suppression of electroconvection and an increase in the length of plateau of the current—voltage curve due to the formation of fixed weakly basic amino groups, which are catalytically active in the reaction of water dissociation. A linear correlation is found between the dimensions of the region of electroconvective instability and a fraction of weakly basic functional amino groups in the composition of strongly basic membranes.

Author information
  • Voronezh State University, Universitetskaya pl. 1, Voronezh, 394018, Russia

    V. I. Vasil’eva & E. M. Akberova

  • Kuban State University, ul. Stavropol’skaya 149, Krasnodar, 350040, Russia

    V. I. Zabolotskii

References
  1. Rubinshtein, I., Zaltzman, B., Pretz, J., and Linder, K., Russ. J. Electrochem., 2002, vol. 38, p. 853.
  2. Zabolotskii, V.I., Nikonenko, V.V., Urtenov, M.Kh., Lebedev, K.A., and Bugakov, V.V., Russ. J. Electrochem., 2012, vol. 48, p. 692.
  3. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination, 2014, vol. 342, p. 85.
  4. Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., Larchet, C., and Pourcelly, G., J. Phys. Chem. B, 2006, vol. 110, p. 13458.
  5. Vasil’eva, V.I., Zhil’tsova, A.V., Malykhin, M.D., Zabolotskii, V.I., Lebedev, K.A., Chermit, R.Kh., and Sharafan, M.V., Russ. J. Electrochem., 2014, vol. 50, p. 120.
  6. Vasil’eva, V.I., Shaposhnik, V.A., Grigorchuk, O.V., and Petrunya, I.P., Desalination, 2006, vol. 192, p. 408.
  7. Vasil’eva, V.I., Shaposhnik, V.A., Zabolotskii, V.I., Lebedev, K.A., and Petrunya, I.P., Sorbtsionnye Khromatogr. Protsessy, 2005, vol. 5, no. 4, p. 545.
  8. Aritomi, T., Boomgaard, Th., and Srathman, H., Desalination, 1996, vol. 104, p. 13.
  9. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, no. 6, p. 1403.
  10. Shaposhnik, V.A., Kinetika elektrodializa (Kinetics of Electrodialysis), Voronezh: Voronezh Gos. Univ., 1989.
  11. Shaposhnik, V.A., Vasil’eva, V.I., and Grigorchuk, O.V., Adv. Colloid Interface Sci., 2008, vol. 139, p. 74.
  12. Pis’menskaya, N.D., Cand. Sci. (Chem.) Dissertation, Krasnodar, 1989.
  13. Shaposhnik, V.A., Vasil’eva, V.I., and Reshetnikova, E.V., Russ. J. Electrochem., 2000, vol. 36, p. 773.
  14. Shaposhnik, V.A.‚ Vasil’eva, V.I., Ugryumov, R.B., and Kozhevnikov, M.S., Russ. J. Electrochem., 2006, vol. 42, p. 531.
  15. Pevnitskaya, M.V., Elektrokhimiya, 1992, vol. 28, p. 1708.
  16. Akberova, E.M., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, p. 147.
  17. De Barros Machado, M. and Santiago, V.M.J., Electrodialysis and Water Reuse. Novel Approaches, Berlin: Springer, 2014, p. 86.
  18. Shaposhnik, V.A. and Zolotareva, R.I., Elektrokhimiya, 1979, vol. 15, p. 1545.
  19. Greben’, V.P., Drachev, G.Yu., and Kovarskii, N.Ya., Elektrokhimiya, 1989, vol. 25, p. 488.
  20. Berezina, N.P., Ivina, O.P., and Rubinina, D.V., Diagnostika ionoobmennykh membran posle real’nogo elektrodializa (Diagnostics of Ion-Exchange Membranes after Real Electrodialysis), Krasnodar: Kuban. Gos. Univ., 1990.
  21. Dammak, L., Larchet, Ch., and Grande, D., Sep. Purif. Technol., 2009, vol. 69, p. 43.
  22. Kedem, O., Cohen, J., Warshawsky, A., and Kahana, N., Desalination, 1983, vol. 46, p. 41.
  23. Smagin, V.U., Zhurov, N.N., Yaroshevsky, D.A., and Yevdokimov, O.V., Desalination, 1983, vol. 46, p. 253.
  24. Bauer, B., Strathmann, H., and Effenberger, F., Desalination, 1990, vol. 79, p. 125.
  25. Hwang, U.-S. and Choi, J.-H., Sep. Purif. Technol., 2006, vol. 48, p. 16.
  26. Choi, J-H. and Moon, S-H., J. Colloid Interface Sci., 2003, vol. 265, p. 93.
  27. Sata, T., Tsujimoto, M., Yamaguchi, T., and Matsusaki, K., J. Membr. Sci., 1996, vol. 112, p. 161.
  28. Zabolotskii, V.I., Bugakov, V.V., Sharafan, M.V., and Chermit, R.Kh., Russ. J. Electrochem., 2012, vol. 48, p. 650.
  29. Zabolotskii, V.I., Chermit, R.Kh., and Sharafan, M.V., Russ. J. Electrochem., 2014, vol. 50, p. P.38.
  30. Mel’nik, N.A., Shevtsova, K.A., Pis’menskaya, N.D., and Nikonenko, V.V., Kondensirovannye Sredy Mezhfaznye Granitsy, 2010, vol. 12, no. 3, p. 233.
  31. Vasil’eva, V.I., Akberova, E.M., Zhil’tsova, A.V., Chernykh, E.I., Sirota, E.A., and Agapov, B.L., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2013, no. 5, p. 833.
  32. Sirota, E.A., Kranina, N.A., Vasil’eva, V.I., Malykhin, M.D., and Selemenev, V.F., Vestn. Voronezh. Gos. Univ. Ser.: Khim. Biol. Formats., 2011, no. 2, p. 53.
  33. Vasil’eva, V.I., Akberova, E.M., Shaposhnik, V.A., and Malykhin, M.D., Russ. J. Electrochem., 2014, vol. 50, p. 789.
  34. Vasil’eva, V.I., Pis’menskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1293.
  35. Akberova, E.M. and Malykhin, M.D., Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 232.
  36. Vasil’eva, V.I., Akberova, E.M., Demina, O.A., Kononenko, N.A., and Malykhin, M.D., Russ. J. Electrochem., 2015, vol. 51, p. P.627.
  37. Zabolotskii, V.I., Lebedev, K.A., Urtenov, M.Kh., Nikonenko, V.V., Vasilenko, P.A., Shaposhnik, V.A., and Vasil’eva, V.I., Russ. J. Electrochem., 2013, vol. 49, p. P.369.
  38. Rubinstein, I. and Maletzki, F., J. Chem. Soc., Faraday Trans. 2, 1991, vol. 87, p. 2079.
  39. Rubinstein, I., Zaltzman, B., and Kedem, O., J. Membr. Sci., 1997, vol. 125, p. 17.
  40. Kovalenko, A.V., Zabolotskii, V.I., Nikonenko, V.V., and Urtenov, M.Kh., Politemat. Setevoi Elektron. Nauchn. Zh. Kuban. Gos. Agrar. Univ., 2014, no.14.
  41. Uzdenova, A.M., Kovalenko, A.V., and Urtenov, M.Kh., Matematicheskie modeli elektrokonvektsii v elektromembrannykh sistemakh. (Mathematical Models of Electroconvection in the Electromembrane Systems), Karachaevsk: Karach.—Cherkess. Gos. Univ., 2011.
  42. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Pourcelli, G., and Larchet, G., Russ. J. Electrochem., 2012, vol. 48, p. 610.
  43. Choi, J.-H., Lee, H.-J., and Moon, S.-H., J. Colloid Interface Sci., 2001, vol. 238, no. 1, p. 188.
  44. Ibanez, R., Stamatialis, D.F., and Wessling, M., J. Membr. Sci., 2004, vol. 239, no. 1, p. 119.
  45. Vasil’eva, V.I., Zhil’tsova, A.V., Akberova, E.M., and Fataeva, A.I., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 257.
  46. Urtenov, M.K., Uzdenova, A.M., Kovalenko, A.V., Nikonenko, V.V., Pismenskaya, N.D., Vasil’eva, V.I., Sistat, P., and Pourcelly, G., J. Membr. Sci., 2013, vol. 447, p. 190.
  47. Zhil’tsova, A.V., Vasil’eva, V.I., Malykhin, M.D., Pis’menskaya, N.D., and Mel’nik, N.A., Vestn. Voronezh. Gos. Univ. Ser.: Khim. Biol. Formats., 2013, no. 2, p. 35.
  48. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Adv. Colloid Interface Sci., 2010, vol. 160, p. 101.
  49. Nikonenko, V.V., Yaroslavtsev, A.B., and Pourcelly, G., in Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico, A., Eds., Wiley, 2012, p. 267.
  50. Akberova, E.M., Vasil’eva, V.I., and Malykhin, M.D., Kondensirovannye Sredy Mezhfaznye Granitsy, 2015, vol. 17, no. 3, p. 273.
  51. Zabolotskii, V.I., Sharafan, M.V., and Chermit, R.Kh., RF Patent no. 2559486, 2013.
  52. Berezina, N.P., Elektrokhimiya membrannykh sistem (Electrochemistry of Membrane Systems), Krasnodar: Kuban. Gos. Univ., 2009.
  53. Polyanskii, N.G. and Shaburov, M.A., Zh. Anal. Khim., 1963, vol. 18, p. 304.
  54. Vasil’eva, V.I., Shaposhnik, V.A., Grigorchuk, O.V., and Malykhin, M.D., Russ. J. Electrochem., 2002, vol. 38, p. 846.
  55. Maletzki, F., Rosler, H.-W., and Staude, E.J., J. Membr. Sci., 1992, vol. 71, p. 105.
  56. Pis’menskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, Ph., Pourcelly, G., and Larshe, K., Russ. J. Electrochem., 2007, vol. 43, p. 307.
  57. Sirota, E.A., Vasil’eva, V.I., and Akberova, E.M., Otsenka poverkhnostnoi i ob’emnoi neodnorodnosti geterogennykh ionoobmennykh membran po elektronnomikroskopicheskim snimkam (Estimation of Surface and Bulk Inhomogeneity of Heterogeneous Ion-Exchange Membranes by SEM Images. A Computer Program), Svid. Gos. Reg. no. 2012617310, 2012.
  58. Vasil’eva, V.I., Kranina, N.A., Malykhin, M.D., Akberova, E.M., and Zhil’tsova, A.V., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2013, no. 1, p. 144.
  59. Polyanskii, N.G. and Tulupov, P.E., Usp. Khim., 1971, vol. 11, no. 12, p. 2250.
  60. Sata, T., Tsujimoto, M., Yamaguchi, T., and Matsusaki, K., J. Membr. Sci., 1996, vol. 112, p. 161.
  61. Hwang, U.-S. and Choi, J.-H., Sep. Purif. Technol., 2006, vol. 48, p. 16.
  62. Rubinstein, I. and Zaltzman, B., Phys. Rev. E, 2000, vol. 62, p. P. 2238.
  63. Knyaginicheva, E.V., Belashova, E.D., Sarapulova, V.V., and Pis’menskaya, N.D., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 282.