Abstract / Full Text

The electrochemical, ion-exchange, sorption, hydrophilic-hydrophobic properties of several types of electrodes based on activated carbon (AC) and its porous structure are studied. By the method of standard contact porosimetry it is found that AC exhibits both hydrophilic and hydrophobic porosity and has the high specific surface area (600–2600 m2/g) which explains its use in supercapacitors and for capacitive deionization (CDI) of water. A new phenomenon of superhydrophilicity caused by swelling of surface groups (SG) in water is observed. The measurements of the AC surface conductivity show that even in pure water AC exhibits considerable ionic conductivity, which makes possible its use in the production of pure water by CDI. AC is shown to be an electron-ion-exchanger which is its unique feature. It is found that in addition to the electric double layer capacitance, the pseudocapacitance of redox-reactions of surface groups makes a substantial contribution into its total capacitance. The deep cathodic charging to negative potentials vs. reversible hydrogen electrode (RHE) in concentrated H2SO4 allows reaching the specific preudocapacitance of AC of 1100 F/g mainly due to the high pseudocapacitance of the reaction of hydrogen intercalation into carbon. This corresponds to the formation of a new compound C6H. In pure water, the specific capacitance of AC reaches 66 F/g and does not increase with the increase in KCl concentration, which suggests that this capacitance is associated with surface groups.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. M. Volfkovich, A. A. Mikhalin, A. Yu. Rychagov, V. E. Sosenkin & D. A. Bograchev

  1. Tyutyunnik, V.M., Chemists—Nobel Prize winners, Nov. Zhizni, Nauke, Tekh.: Khim., 1978, no. 9.
  2. Khrushcheva, M.L., For which achievements the Nobel Prize was awarded to A.N. Frumkin, Sociology of Science and Technology, 2018. vol. 9. no. 4.
  3. Adsorbents, ikh poluchenie, svoistva i primenenie (Adsorbents, their production, properties, and application), Dubinin, M.M. and Plachenov, T.G., Eds., Leningrad: Nauka, 1962.
  4. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.
  5. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic, 1967.
  6. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov, (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.
  7. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999.
  8. Mattson, J.S. and Makr, H.B. Activated Carbon, New York: Marcel Dekker, 1971.
  9. Tarkovskaya, I.A., Okislennyi ugol’ (Oxidized Carbon), Kiev: Naukova Dumka, 1981.
  10. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, New York: Springer, 2014.
  11. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.
  12. Volfkovich, Yu.M. and Serdyuk, T.M. Electrochemical capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.
  13. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
  14. Sharma, P. and Bhatti, T.S., A review on electrochemical double-layer capacitors, Energy Convers. Manage., 2010, vol. 51, p. 2901.
  15. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, New York: Wiley, 2015.
  16. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y., Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 2009, vol. 19, p. 291.
  17. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.
  18. Volfkovich, Yu.M., Mazin, V.M., and Urisson, N.A., Operation of double-layer capacitors based on carbon materials, Russ. J. Electrochem., 1998, vol. 34, p. 740.
  19. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.
  20. Faisal, A., Marzooqi, Al., Amal, A., Ghaferi, A., Saadat, I., and Hilal, N., Application of Capacitive Deionisation in water desalination: A review, Desalination, 2014, vol. 342, p. 3.
  21. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, Low Level Waste Conference, Orlando, USA, 1995.
  22. Oren, Y., Desalination. Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.
  23. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Science and Engineering, Elsevier, 2010.
  24. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p. 157.
  25. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.
  26. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells, Phys. Rev. Lett, 2012, vol. 109, p. 156103.
  27. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.
  28. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes based on carbon nanomaterials: Structure, properties and application to capacitive deionization in static cells, in Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Fesenko, O. and Fesenko, L., Eds., Springer, 2018, p. 127.
  29. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Park, D.C., Capacitive deionization of aqueous solutions. Modeling and experiments, Desalin. Water Treat., 2017, vol. 69, p. 130.
  30. Butyrgin, G.M., Vysokoporistye uglerodnye materialy, (Highly Porous Carbon Materials), Khimiya, 1976.
  31. Volfkovich, Yu.M. and Bagotzky, V.S., The method of standard porosimetry 2. Investigation of the formation of porous structures, J. Power Sources, 1994, vol. 48, p. 339.
  32. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural properties of porous materials and powders used in different fields of science and technology, London: Springer, 2014.
  33. Volfkovich, Yu.M., Sakars, A.V., and Volinsky A.A., Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnol., 2005, vol. 2, p. 292.
  34. Dzyazko, Yu.S., Ponomaryova, L.N., Volfkovich, Yu.M., Trachevskii, V.V., and Palchik, A.V., Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties, Microporous Mesoporous Mater., 2014, vol. 198, p. 55.
  35. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Pure Appl. Chem., 2012, vol. 84, p. 107.
  36. Volfkovich, Yu.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface conductivity measurements for porous carbon electrodes. Russ. J. Electrochem., 2013, vol. 49, p. 594.
  37. Volfkovich, Yu.M., Rychagov, A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water using mosaic membrane, Desalination, 2018, vol. 426, p. 1.
  38. Goertzen, S.L., Theriault, K.D., Oickle, A.M., Tarasuk, A.C., and Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon, 2010, vol. 48, p. 1252.
  39. Oickle, A.M., Goertzen, S.L., Hopper, K.R., Abdalla, Y.O., and Andreas, H.A., Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant, Carbon, 2010, vol. 48, p. 3313.
  40. Vol’fkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E., and Gol’din, M.M., The effect of electrochemical modification of activated carbons by polypyrrole on their structure characteristics, composition of surface compounds, and adsorption properties, Russ. J. Electrochem., 2017, vol. 53, p. 1363.
  41. Fridrikhsberg, D.A., in Collection of Papers: Elektrokineticheskie svoistva kapillyarnykh sistem (Electrokinetic Properties of Capillary Systems), Zhukov, I.I., Ed., Moscow: Akad. Nauk SSSR, 1956, p. 156.
  42. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2008.
  43. Frumkin, A.N., Potentsialy nulevogo zaryada (Potentials of Zero Charge), Moscow: Nauka, 1979.
  44. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu., Sosenkin, V.E., and Chaika, M.Yu., Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 2015, vol. 19, p. 1.
  45. Bograchev, D.A., Gryzlov, D.Yu., Sosenkin, V.E., and Volfkovich, Yu.M., Modeling and experimental verification of operation of supercapacitors with carbon electrodes in non-aqueous electrolytes. The energy efficiency, Electrochim. Acta., 2019, vol. 319, p. 552.
  46. Bleda-Martinez, M.J., Agull, J.A., Lozano-Caste, D., Morall, E., Cazorla-Amor, D., and Linares-Solano, A., Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 2005, vol. 43, p. 2677.
  47. Vol’fkovich, Yu.M., Mikhalin, A.A, Bograchev, D.A., and Sosenkin, V.E., Carbon electrodes with high pseudocapacitance for supercapacitors. Russ. J. Electrochem., 2012, vol. 48, p. 424–433.
  48. Volfkovich, Yu.M., Mikhailin, A.A., Bograchev, D.A., Sosenkin, V.E., and Bagotsky, V.S., Studies of supercapacitor carbon electrodes with high pseudocapacitance, in Recent Trend in Electrochemical Science and Technology, INTECH open access publisher, 2012. www.intechopen.com.
  49. Frumkin, O.A., Bagotskii, V.S., Iofa, Z.A., and Kabanov, B.N., Kinetika elektrodnykh protsessov (Kinetics of Electrode Processes), Moscow: MGU, 1952.
  50. Ubellode, R.A. and Lewis, F.A., Graphite and Its Crystal Compounds, Oxford: Clarendon, 1060.
  51. Fialkov, A.C., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Interlayer Compounds and Nanocomposites on Their Basis), Aspekt, 1997.
  52. Yakovlev, V.Yu., Fomkin, A.A., and Tvardovski, A.V., J. Colloid Interface Sci., 2004. vol. 280. p. 305.
  53. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Institut Kataliza, 1995.
  54. Rychagov, A.Yu. and Volfkovich, Yu.M., Low reversible charging processes on highly dispersed carbon electrodes, Russ. J. Electrochem., 2009, vol. 45, p. 304.