Examples



mdbootstrap.com



 
Статья
2020

High Chrome Steel Modified by High-Current Pulsed Electron Beam


Yu. F. IvanovYu. F. Ivanov, E. A. PetrikovaE. A. Petrikova, A. D. TeresovA. D. Teresov, O. V. IvanovaO. V. Ivanova
Российский физический журнал
https://doi.org/10.1007/s11182-020-01949-0
Abstract / Full Text

The paper presents the results of the structure and properties modification of 20Cr23Ni18 (AISI 310) high chrome austenitic stainless steel after the exposure to the low energy high current pulsed electron beam (LEHCPEB) irradiation. The AISI 310 is used to manufacture machine components and mechanisms operating at 1000–1050°С such as combustion chambers, turbine blades, and others. The SOLO plasma-ionassisted electron-beam setup (Institute of High Current Electronics SB RAS, Tomsk, Russia) is used for the steel treatment. The SOLO provides a low-pressure arc discharge with a grid-stabilized cathode plasma boundary and the open-boundary anode plasma. The electron-beam parameters include 18 keV energy; 20, 30 and 40 J/cm2 energy density; 50 and 200 μs pulse duration; the number of pulses – 3; 0.3 s–1 pulse frequency; ~0.02 Pa gas (argon) pressure in the process chamber. Scanning and transmission electron microscopies and the X-ray diffraction analysis are used to investigate the structure and phase composition of the steel, microhardness and wear resistance being regarded as the steel properties. It is shown that the exposure of the AISI 310 to high-current pulsed electron beam results in a high-speed melting of the surface layer, creates the crystallized cellular structure of submicron size, and enhances the wear resistance by 8 times.

Author information
  • Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaYu. F. Ivanov, E. A. Petrikova & A. D. Teresov
  • Tomsk State University of Architecture and Building, Tomsk, RussiaO. V. Ivanova
References
  1. A. S. Zubchenko, ed., Steel and Alloy Grade Guide [in Russian], Mashinostroenie, Moscow (2003).
  2. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, et al., Promising Radiation Beam Technology for Metal Processing [in Russian], Kruglyi stol, Moscow (2001).
  3. K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Modification of Materials [in Russian], MSU, Moscow (2005).
  4. A. P. Laskovnev, Yu. F. Ivanov, E. A. Petrikova, et al., Structure and Properties of Eutectic Silumin Modified by Electron-Ion Beam Plasma Treatment [in Russian], Belorusskaya nauka, Minsk (2013).
  5. S. V. Raikov, E. A. Budovskikh, V. E. Gromov, et al., Structure, Phase Composition and Surface Properties of Titanium Alloys After Electrical Discharge Alloying and Electron-Beam Treatment [in Russian], Poligrafist, Novokuznetsk (2015).
  6. N. N. Koval’ and Yu. F. Ivanov, eds., Steel Surface Structure After Electron-Ion Beam Plasma Treatment [in Russian], NTL, Tomsk (2016).
  7. V. Rotshtein, Yu. Ivanov, and A. Markov, Materials Surface Processing by Directed Energy Techniques, Chapter 6, Y. Pauleau, ed., Elsevier, (2006), pp. 205–240.
  8. N. N. Koval' and Yu. F. Ivanov, Russ. Phys J., 51, No. 5, 505–516 (2008).
  9. D. G. Brandon and W. D. Kaplan, Microstructural Characterization of Materials [Russian translation], Tekhnosfera, Moscow (2004).
  10. L. M. Utevskii, Diffraction Electron Microscopy in Metal Science [in Russian], Metallurgiya, Moscow (1973).
  11. K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns [Russian translation], Mir, Moscow (1971).
  12. Yu. F. Ivanov, E. A. Petrikova, O. V. Ivanova, et al., Russ. Phys J., 58, No. 4, 478–484 (2015).
  13. Z. G. Bikbaeva, Yu. F. Ivanov, О. L. Khasanov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 9/3, 184–187 (2016).
  14. Yu. F. Ivanov, А. I. Potekaev, Е. А Petrikova, et al., IOP Conf. Series: Mater. Sci. Eng., 81, No. 012009 (2015).
  15. Yu. F. Ivanov, A. D. Teresov, E. A. Petrikova, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 9/2, 223–226 (2016).
  16. A. A. Samarskii, Introduction to Numerical Methods [in Russian], Nauka, Moscow (1997).
  17. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Magnitudes: Handbook [in Russian], Energoatomizdat, Moscow (1991).
  18. Yu. F. Ivanov, E. V. Kornet, E. V. Kolov, and V. E. Gromov, Quenched Constructional Steel: Structure and Hardening Mechanisms [in Russian], Siberian State Industrial University, Novokuznetsk (2010).
  19. Yu. F. Ivanov, V. E. Gromov, N. A. Popovа, et al., Structure and Phase Composition and Hardening Mechanisms of Deformed Steel [in Russian], Poligrafist, Novokuznetsk (2016).