Examples



mdbootstrap.com



 
Статья
2018

Investigation of Boundary-Value Problem for Stationary System of Equations of Viscous Non-Isothermal Fluid


N. V. MalaiN. V. Malai, E. R. ShchukinE. R. Shchukin, A. V. LimanskayaA. V. Limanskaya
Русская математика
https://doi.org/10.3103/S1066369X18040060
Abstract / Full Text

In the Stokes approximation at small Reynolds and Peclet numbers, we obtain a solution to the boundary-value problem of flow around of particles of spherical shape for stationary system of equations of a viscous non-isothermal fluid comprising a linearized by speed Navier–Stokes equation system and the equation of heat transfer given an exponential-power law of dependence of viscosity of fluid on temperature.

Author information
  • Belgorod State National Research University, ul. Pobedy 85, Belgorod, 308015, RussiaN. V. Malai & A. V. Limanskaya
  • Joint Institute for High Temperatures of the Russian Academy of Sciences, ul. Izhorskaya 13, Bld. 2, Moscow, 125412, RussiaE. R. Shchukin
References
  1. Ladyzhenskaya, O. A. “Untersuchung der Navier–Stokesschen Gleichung für den Fall der stationären Bewegung einer inkompressiblen Flüssigkeit”, Usp.Mat. Nauk XIV No. 3(87), 75–97 (1959) [in Russian].
  2. Ladyzhenskaya, O. A. “The Sixth Millennium Problem: Navier–Stokes Equations, Existence and Smoothness”, Russ. Math. Surv. 58, No. 2, 251–286 (2003).
  3. Naidenov, V. I. “Steady Flow of a Viscous IncompressibleFluid Taking TemperatureDependence of Viscosity Into Account”, J. Appl.Math. Mech. 38, No. 1, 144–148 (1974).
  4. Golovin, A. M., Fominykh, V. V. “Motion of a Spherical Particle in a Viscous Nonisothermal Fluid”, Fluid Dyn. 18, 26–29 (1983).
  5. Malay, N. V., Pleskanev, A. A., Shchukin, E. R. “Effect of Internal Heat Evolution on the Motion of a Solid Particle in a Viscous Fluid”, Technical Physics 76, No. 3, 317–321 (2006).
  6. Malaj, N. V., Shchukin, E. R., Yalamov, Yu. I. “Thermocapillary Drift of a Heated Droplet in a Viscous Liquid in the Field of Electromagnetic Radiation”, Doklady Physics 379, No. 6, 1–6 (2001).
  7. Bretschneider, S. Properties of Gases and Liquids. Engineering Methods of Calculation (Khimiya, Moscow, 1966) [Russian translation].
  8. Happel, J., Brenner, H. Low Reynolds Number Hydrodynamics (Noordhoff, Leyden, 1965).
  9. Landau, L. D., Lifshits, E.M. Fluid Mechanics (ITTL, Moscow, 1954; Pergamon Press, Oxford–Elmsford, New York, 1987), Vol. 6.
  10. Glushak, A. V., Malaj, N. V., Mironova, N. N. “Solution of the Boundary Value Problem for the Navier–Stokes Equation for the Flow of a Gaseous Medium Past a Heated Spheroid”, Differ. Equ. 48 (6), 886–890 (2012).
  11. Kamke, E. Differentialgleichungen. Lö sungsmethoden und Lö sungen I. Gewö hnliche Differentialgleichungen (Leipzig, 1942; GIFML,Moscow, 1981).
  12. Coddington, E. A., Levinson, N. Theory of Ordinary Differential Equations (New York, McGraw-Hill, 1955; In. Lit.,Moscow, 1958).
  13. Malai, N. V., Shchukin, E. R., Stukalov, A. A., Ryazanov, K. S. “Gravity-Induced Motion of a Uniformly Heated Solid Particle in aGaseous Medium”, Journal of AppliedMechanics and Technical Physics 49, No. 1, 58–63 (2008).
  14. Malai, N. V., Shchukin, E. R., Shulimanova, Z. L. “Molecular Heat Exchange of a Solid Spherical Particle With a GaseousMedium”, High Temperature 51, No. 4, 495–499 (2013).