Transformation of Alcohols into Nitriles under Electrocatalytic Oxidation Conditions

V. P. Kashparova V. P. Kashparova , E. N. Shubina E. N. Shubina , I. B. Il’chibaeva I. B. Il’chibaeva , I. I. Kashparov I. I. Kashparov , I. Yu. Zhukova I. Yu. Zhukova , E. Sh. Kagan E. Sh. Kagan
Российский электрохимический журнал
Abstract / Full Text

The conversion of alcohols into nitriles was studied under conditions of indirect electrochemical oxidation with a catalytic system 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxyl–potassium iodide–pyridine in a two-phase aqueous organic medium of methylene chloride–aqueous sodium hydrocarbonate (pH 8.6) in the presence of hydroxylamine as a source of nitrogen. The desired products were obtained with yields of up to 70%.

Author information
  • Platov South-Russian State Polytechnic University, 346428, Novocherkassk, Russia

    V. P. Kashparova, I. B. Il’chibaeva, I. I. Kashparov & E. Sh. Kagan

  • Don State Technical University, 344000, Rostov-on-Don, Russia

    E. N. Shubina, I. I. Kashparov & I. Yu. Zhukova

  1. Kim, J., Kim, H. J., and Chang, S., Synthesis of aromatic nitriles using nonmetallic cyano-group sources, Angew. Chem., Int. Ed., 2012, vol. 51(48), p. 11948.
  2. Anbarasan, P., Schareina, T., and Beller, M., Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles, Chem. Soc. Rev., 2011, vol. 40(10), p. 5049.
  3. Lindley, J., Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron, 1984, vol. 40(9), p. 1433.
  4. Beletskaya, I.P., Sigeev, A.S., Peregudov, A.S., and Petrovskii, P.V., Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles, J. Organomet. Chem., 2004, vol. 689(23), p. 3810.
  5. Kuo, C.-W., Zhu, J.-L., Wu, J.-D., Chu, C.-M., Yao, C.-F., and Shia, K.-S., A convenient new procedure for converting primary amides into nitriles, Chem. Commun., 2007, vol. 3, p. 301.
  6. Yamaguchi, K., Fujiwara, H., Ogasawara, Y., Kotani, M., and Mizuno, N., A tungsten–tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles, Angew. Chem., Int. Ed., 2007, vol. 46(21), p. 3922.
  7. Yin, W., Wang, C., and Huang, Y., Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis, Org. Lett., 2013, vol. 15(8), p. 1850.
  8. Sridhar, M., Reddy, M.K.K., Sairam, V.V., Raveendra, J., Godala, K.R., Narsaiah, C., Ramanaiah, B.C., and Reddy, C.S., Acetohydroxamic acid: A new reagent for efficient synthesis of nitriles directly from aldehydes using Bi(OTf)3 as the catalyst, Tetrahedron Lett., 2012, vol. 53(27), p. 3421.
  9. Bobbitt, J.M., Bartelson, A.L., Bailey, W.F., Hamlin, T.A., and Kelly, C.B., Oxoammonium salt oxidations of alcohols in the presence of pyridine bases, J. Org. Chem., 2014, no. 79, p. 1055.
  10. Kelly, C.B., Lambert, K.M., Mercadante, M.A., Ovian, J.M., Bailey, W.F., and Leadbeater, N.E., Access to nitriles from aldehydes mediated by an oxoammonium salt, Angew. Chem., Int. Ed., 2015, vol. 54(14), p. 4241.
  11. Bobbitt, J. M., Bruckner, C., and Merbouh, N., Oxoammonium- and nitroxide-catalyzed oxidations of alcohols, Org. React., 2009, no. 74, p. 103.
  12. Kashparova, V.P., Klushin, V.A., Zhukova, I.Yu., Kashparov, I.S., Leontyeva, D.V., Il’chibaeva, I.B., Smirnova, N.V., Kagan, E.Sh., and Chernyshev, V.M., TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine, Tetrahedron Lett., 2017, vol. 58, p. 3517.
  13. Shen, Z.L., Chen, M., Fang, T.T., Li, M.C., Mo, W.M., Hu, B.X., Sun, N., and Hu, X.Q., Transformation of ethers into aldehydes or ketones: A catalytic aerobic deprotection/oxidation pathway, Tetrahedron Lett., 2015, vol. 56(21), p. 2768.
  14. Nutting, J.E., Rafiee, M., and Stahl, S.S., Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions, Chem. Rev., 2018, vol. 118(9), p. 4834.
  15. Lu, J.-J., Ma, J.-Q., Yi, J.-M., Shen, Z.-L., Zhong, Y.-J., Ma, C.-A., and Li, M.-C., Electrochemical polymerization of pyrrole containing TEMPO side chain on Pt electrode and its electrochemical activity, Electrochim. Acta, 2014, vol. 130, p. 412.
  16. Yi, J.M., Tang, D.Y., Song, D.D., Wu, X.H., Shen, Z.L., and Li, M.C., Selective oxidation of benzyl alcohol on poly (4-(3-(pyrrol-1-yl) propionamido)-2,2,6,6-tetramethyl-piperidin-1-yloxy) electrode, J. Solid State Electrochem., 2015, vol. 19(8), p. 2291.
  17. Okimoto, M. and Chiba, T., Electrochemical transformations of aldehydes into methyl carboxylates and nitriles, J. Org. Chem., 1988, vol. 53(1), p. 218.
  18. Kashparova, V.P., Kashparov, I.S., Zhukova, I.Yu., Astakhov, A.V., Ilchibaeva, I.B., and Kagan, E.Sh., Oxidative dimerization of alcohols in the presence of nitroxyl radical-iodine catalytic system, Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2423.
  19. Kashparova, V.P., Papina, E.N., Kashparov, I.I., Zhukova, I.Yu., Ilchibaeva, I.B., and Kagan, E.Sh., One-pot electrochemical synthesis of acid anhydrides from alcohols, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 1911.
  20. Kagan, E.Sh., Kashparova, V.P., Zhukova, I.Yu., and Kashparov, I.I., Oxidation of alcohols by iodine in the presence of nitroxyl radicals generated electrochemically, Russ. J. Applied Chem., 2010, vol. 83, no. 4, p. 693.
  21. Gaspa, S., Porcheddu, A., and De Luca, L., Metal-free direct oxidation of aldehydes to esters using TCCA, Org. Lett., 2015, vol. 17, p. 3666.