Статья
2021

Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System


R. R. Kayumov R. R. Kayumov , L. V. Shmygleva L. V. Shmygleva , E. Yu. Evshchik E. Yu. Evshchik , E. A. Sanginov E. A. Sanginov , N. A. Popov N. A. Popov , O. V. Bushkova O. V. Bushkova , Yu. A. Dobrovolsky Yu. A. Dobrovolsky
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521060045
Abstract / Full Text

The electrotransport characteristics of the polymer electrolyte based on lithiated Nafion-115 membrane plasticized by high-boiling dipolar aprotic solvents—sulfolane (SL), ethylene carbonate (EC), and diglyme (G2) and also by their binary and ternary mixtures are studied in a wide temperature interval (from –60 to +80°C). The best transport properties (conductivity 10–5–10–4 S cm–1 in the interval from –20 to +70°C) are demonstrated by samples plasticized with binary mixtures EC/G2 and EC/SL in certain ratios. The ternary plasticizer provides low activation energy (10–20 kJ mol–1) and sufficiently high conductivity in the temperature region not lower than –10°C.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

    R. R. Kayumov, L. V. Shmygleva, E. Yu. Evshchik, E. A. Sanginov & Yu. A. Dobrovolsky

  • Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    N. A. Popov & O. V. Bushkova

References
  1. Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev., 2017, vol. 46, p. 797.
  2. Voropaeva, D.Y., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89. Iss. 10, p. 1132.
  3. Kusoglu, A. and Weber, A.Z., New insights into perfluorinated sulfonic-acid ionomers, Chem. Rev., 2017, vol. 117, p. 987.
  4. Doyle, M., Lewittes, M.E., Roelofs, M.G., Perusich, S.A., and Lowrey, R.E., Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties, J. Membr. Sci., 2001, vol. 184, p. 257.
  5. Sachan, S., Ray, C.A., and Perusich, S.A., Lithium ion transport through nonaqueous perfluoroionomeric membranes, Polym. Eng. Sci., 2002, vol. 42, p. 1469.
  6. Sanginov, E.A., Kayumov, R.R., Shmygleva, L.V., Lesnichaya, V.A., Karelin, A.I., and Dobrovolsky, Yu.A., Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion, Solid State Ionics, 2017, vol. 300, p. 26.
  7. Sanginov, E.A., Evshchik, E.Y., Kayumov, R.R., and Dobrovol’skii, Yu.A., Lithium-ion conductivity of the Nafion membrane swollen in organic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 986.
  8. Liu, Y., Cai, Z., Tan, L., and Li, L., Ion exchange membranes as electrolyte for high performance Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 9007.
  9. Doyle, M., Lewittes, M.E., Roelofs, M.G., and Perusich, S.A., Ionic conductivity of nonaqueous solvent-swollen ionomer membranes based on fluorosulfonate, fluorocarboxylate, and sulfonate fixed ion groups, J. Phys. Chem. B, 2001, vol. 105, p. 9387.
  10. Su, L., Darling, R.M., Gallagher, K.G., Xie, W., Thelen, J.L., Badel, A.F., Barton, J.L., Cheng, K.J., Balsara, N.P., Moore, J.S., and Brushett, F.R., An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolytes, J. Electrochem. Soc., 2016, vol. 163, p. A5253.
  11. Voropaeva, D.Y., Novikova, S.A., Kulova, T.L., and Yaroslavtsev, A.B., Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents, Ionics, 2018, vol. 24, p. 1685.
  12. Gao, J., Sun, C., Xu, L., Chen, J., Wang, C., Guo, D., and Chen, H., Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode, J. Power Sources, 2018, vol. 382, p. 179.
  13. Gao, J., Shao, Q., and Chen, J., Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery, J. Energy Chem., 2020, vol. 46, p. 237.
  14. Liang, H.-Y., Qiu, X.-P., Zhang, S.-C., Zhu, W.-T., and Chen, L.-Q., Study of lithiated Nafion ionomer for lithium batteries, J. Appl. Electrochem., 2004, vol. 34, p. 1211.
  15. Cai, Z., Liu, Y., Liu, S., Li, L., and Zhang, Y., High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes, Energy Environ. Sci., 2012, vol. 5, p. 5690.
  16. Navarrini, W., Scrosati, B., Panero, S., Ghielmi, A., Sanguineti, A., and Geniram, G., Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity, J. Power Sources, 2008, vol. 178, p. 783.
  17. Doyle, M., Fuller, T.F., and Newman, J., The importance of the lithium ion transference number in lithium/polymer cells, Electrochim. Acta, 1994, vol. 39, p. 2073.
  18. Voropaeva, D.Y., Novikova, S.A., Xu, T., and Yaroslavtsev, A.B., Polymer electrolytes for LIBs based on perfluorinated sulfocationic Nepem-117 membrane and aprotic solvents, J. Phys. Chem. B, 2019, vol. 123, p. 10217.
  19. Henderson, W.A., Brooks, N.R., Brennessel, W.W., and Young, V.G., Jr., LiClO4 electrolyte solvate structures, J. Phys. Chem. A, 2004, vol. 108, p. 225.
  20. Kayumov, R.R., Sanginov, E.A., Shmygleva, L.V., Radaeva, A.P., Karelin, A.I., Zyubin, A.S., Zyubina, T.S., Anokhin, D.V., Ivanov, D.A., and Dobrovolsky, Yu.A., Ammonium form of Nafion plasticized by dimethyl sulfoxide, J. Electrochem. Soc., 2019, vol. 166, p. F3216.
  21. Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.
  22. Hess, S., Wohlfahrt-Mehrens, M., and Wachtler, M., Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements, J. Electrochem. Soc., 2015, vol. 162, p. A3084.
  23. Watanabe, Y., Kinoshita, S.-I., Wada, S., Hoshino, K., Morimoto, H., and Tobishima S.-I., Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells, J. Power Sources, 2008, vol. 179, p. 770.
  24. Maca, J., Frk, M., and Sedlarikova, M., Properties of electrolytes for Li-ion batteries with higher fire safety, Renewable Energy Power Qual. J., 2013, vol. 1, no. 11, p. 218.
  25. Demakhin, A.G., Ovsyannikov, V.M., and Ponomarenko, S.M., Elektrolitnye sistemy litievykh KhIT (Electrolyte systems of lithium chemical power sources), Saratov: Saratov Univ., 1993.
  26. Huang, Y., Zhao, L., Li, L., Xie, M., Wu, F., and Chen, R., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application, Adv. Mater., 2019, vol. 31, p. 1808393.
  27. Johnson, P.H., The properties of ethylene carbonate and its use in electrochemical applications: A literature review, Lawrence Berkeley Lab., CA (USA), 1985.
  28. Tang, S. and Zhao, H., Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry, RSC Adv., 2014, vol. 4, p. 11251.
  29. Bogle, X., Vazquez, R., Greenbaum, S., Cresce, A.V.W., and Xu, K., Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O-NMR, J. Phys. Chem. Lett., 2013, vol. 4, p. 1664.
  30. Allen, J.L., Borodin, O., Seo, D.M., and Henderson, W.A., Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents—ethylene carbonate and propylene carbonate, J. Power Sources, 2014, vol. 267, p. 821.
  31. Allen, J.L., Seo, D.M., Ly, Q.D., Boyle, P.D., and Henderson, W.A., Solvent-LiBF4 phase diagrams, ionic association and solubility—cyclic carbonates and lactones, ECS Trans., 2012, vol. 41, p. 41.
  32. Seo, D.M., Afroz, T., Ly, Q., O’Connell, M., Boyle, P.D., and Henderson, W.A., A “looking glass” into electrolyte properties: cyclic carbonate and ester-LiClO4 mixtures, ECS Trans., 2012, vol. 41, p. 11.
  33. Hyodo, S. and Okabayashi, K., Raman intensity study of local structure in non-aqueous electrolyte solutions. I. Cation-solvent interaction in LiClO4–ethylene carbonate, Electrochim. Acta, 1989, vol. 34, p. 1551.
  34. Masia, M., Probst, M., and Rey, R., Ethylene carbonate-Li+: A theoretical study of structural and vibrational properties in gas and liquid phases, J. Phys. Chem. B, 2004, vol. 108, p. 2016.
  35. Xuan, X., Wang, J., Lu, J., Pei, N., and Mo, Y., Ion solvation and association in LiClO4/sulfolane solution: a vibrational spectroscopic and molecular orbital study, Spectrochim. Acta A, 2001, vol. 57, p. 1555.
  36. Alvarado, J., Schroeder, M.A., Zhang, M., Borodin, O., Gobrogge, E., Olguin, M., Ding, M.S., Gobet, M., Greenbaum, S., and Xu, K., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries, Mater. Today, 2018, vol. 21, p. 341.
  37. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K., Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev., 2017, vol. 117, p. 7190.
  38. Rhodes, C.P. and Frech, R., Local structures in crystalline and amorphous phases of diglyme-LiCF3SO3 and poly(ethylene oxide)-LiCF3SO3 systems: Implications for the mechanism of ionic transport, Macromolecules, 2001, vol. 34, p. 2660.
  39. Huang, W. and Frech, R. Dependence of ionic association on polymer chain length in poly(ethylene oxide)-lithium triflate complexes, Polymer, 1994, vol. 35(2), p. 235.
  40. Peng, J., Carbone, L., Gobet, M., Hassoun, J., Devany, M., and Greenbaum, S., Natural abundance oxygen-17 NMR investigation of lithium ion solvation in glyme-based electrolytes, Electrochim. Acta, 2016, vol. 213, 606.
  41. Ueno, K., Tatara, R., Tsuzuki, S., Saito, S., Doi, H., Yoshida, K., Mandai, T., Matsugami, M., Umebayashi, Y., Dokko, K., and Watanabe, M., Li+ solvation in glyme–Li salt solvate ionic liquids, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 8248.
  42. Morales, D., Ruther, R.E., Nanda, J., and Greenbaum, S., Ion transport and association study of glyme-based electrolytes with lithium and sodium salts, Electrochim. Acta, 2019, vol. 304, p. 239.
  43. Huang, W., Frech, R., Johansson, P., and Lindgren, J., Cation–polymer interaction and ionic association in diglyme–LiCF3SO3 and diglyme–propylene carbonate–LiCF3SO3 complexes, Electrochim. Acta, 1995, vol. 40, p. 2147.