Examples



mdbootstrap.com



 
Статья
2017

Effect of polyaniline on the stability of electrotransport characteristics and thermochemical properties of sulfocationite membranes with different polymer matrices


S. A. Shkirskaya S. A. Shkirskaya , I. N. Senchikhin I. N. Senchikhin , N. A. Kononenko N. A. Kononenko , V. I. Roldugin V. I. Roldugin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517010128
Abstract / Full Text

A comparative analysis of the electrotransport and thermochemical properties of homogeneous and heterogeneous sulfocationite membranes modified with polyaniline has been performed. The relationship between the conditions of polyaniline synthesis in the membrane matrix and their electric conductivity, electroosmotic permeability, and thermal stability was studied. The conditions of polyaniline synthesis on the surface of a heterogeneous MK-40 membrane had an insignificant effect on the amount of the introduced modifier, while the electric conductivity of the composites remained high enough. The absence of the effect of the polyaniline synthesis conditions on the electric conductivity of МK-40-based composites suggests that the heterogeneity of this membrane is a more significant factor than the polyaniline synthesis conditions. A thermogravimetric analysis of the thermochemical properties showed a significant increase in the thermal stability of the heterogeneous membrane after its modification with polyaniline. For perfluorinated membranes, the thermochemical properties changed less significantly, but the electrotransport of ions and water significantly decreased after modification.

Author information
  • Kuban State University, Krasnodar, Russia

    S. A. Shkirskaya & N. A. Kononenko

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

    I. N. Senchikhin & V. I. Roldugin

References
  1. Berezina, N.P., Kononenko, N.A., and Sytcheva, A.A.-R., Loza, N.V., Shkirskaya, S.A., Hegman, N., and Pungor, A., Electrochim. Acta, 2009, vol. 54, p. 2342.
  2. Berezina, N.P., Kononenko, N.F., Filippov, A.N., Shkirskaya, S.A., Falina, I.V., and Sytcheva, A.A.-R., Russ. J. Electrochem., 2010, vol. 46, p. 485.
  3. Berezina, N.P., Shkirskaya, S.A., Kolechko, M.V., Popova, O.V., Senchikhin, I.N., and Roldugin, V.I., Russ. J. Electrochem., 2011, vol. 47, p. 995.
  4. Protasov, K.V., Shkirskaya, S.A., Berezina, N.P., and Zabolotskii, V.I., Russ. J. Electrochem., 2010, vol. 46, p. 1131.
  5. Kononenko, N.A., Loza, N.V., Shkirskaya, S.A., Falina, I.V., and Khanukaeva, D.Yu., J. Solid State Electrochem., 2015, vol. 19, p. 2623.
  6. Tan, S. and Belanger, D., J. Phys. Chem., 2005, vol. 109, p. 23480.
  7. Tan, S., Laforgue, A., and Belange, D., Langmuir, 2003, vol. 19, p. 744.
  8. Sapurina, I.Yu., Kompan, M.E., Malyshkin, V.V., Rosanov, V.V., and Stejskal, J., Russ. J. Electrochem., 2009, vol. 45, p. 697.
  9. Yurova, P.A., Karavanova, Yu.A., and Yaroslavtsev, A.B., Petroleum Chem., 2012, vol. 52, p. 593.
  10. Yurova, P.A., Karavanova, Yu.A., Gorbunova, Yu.G., and Yaroslavtsev, A.B., Pet. Chem., 2014, vol. 54, p. 551.
  11. Loza, N.V., Loza, S.A., Kononenko, N.A., and Magalyanov, A.V., Pet. Chem., 2015, vol. 55, p. 724.
  12. Nagarale, R.K., Gohil, G.S., Shahi Vinod, K., Trivedi, G.S., and Rangarajan, R., J. Colloid Interface Sci., 2004, vol. 277, p. 162.
  13. Karpenko-Jereb, L.V., Kelterer, A.-M., Berezina, N.P., and Pimenov, A.V., J. Membr. Sci., 2013, vol. 444, p. 127.
  14. Martí-Calatayud, M.C., Buzzi, D.C., García-Gabaldón, M., Bernardes, A.M., Tenório, J.A.S., and Pérez-Herranz, V., J. Membr. Sci., 2014, vol. 466, p. 45.
  15. Garcia-Vasquez, W., Ghalloussi, R., Dammak, L., Larchet, C., Nikonenko, V., and Grande, D., J. Membr. Sci., 2014, vol. 452, p. 104.
  16. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.
  17. Berezina, N.P., Gnusin, N.P., Dyomina, O.A., and Timofeyev, S.V., J. Membr. Sci., 1994, vol. 86, p. 207.
  18. Kotova, D.L. and Selemenev, V.F., Termicheskii analiz ionoobmennykh materialov (Thermal Analysis of Ion- Exchange Materials), Moscow: Nauka, 2002.
  19. De Almeida, S.H. and Kawano, Y., J. Therm. Anal. Calorim., 1999, vol. 58, p. 569.
  20. Kissinger, H.I., Anal. Chem., 1957, vol. 29, p. 1702.
  21. Ozawa, T., J. Therm. Anal., 1979, vol. 2, p. 301.
  22. Koga, N., J. Therm. Anal. Calorim., 2013, p. 1007.
  23. Vyazovkin, S., Isoconversional Kinetics of Thermally Stimulated Processes, Springer, 2015, p. 1007.
  24. Lopatkova, G.Yu., Volodina, E.I., Pis’menskaya, N.D., Fedotov, Yu.A., Cot, D., and Nikolenko, V.V., Russ. J. Electrochem., 2006, vol. 42, p. 847.