Examples



mdbootstrap.com



 
Статья
2018

Sodium-Ion Batteries (a Review)


A. M. SkundinA. M. Skundin, T. L. KulovaT. L. Kulova, A. B. YaroslavtsevA. B. Yaroslavtsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518020076
Abstract / Full Text

State-of-the-art in the studies of sodium-ion batteries is discussed in comparison with their deeper developed lithium-ion analogs. The principal problem hindering the development of competitive sodium-ion batteries is the low effectiveness of the electrode materials at hand. The principal efforts in the formation of anodes for the sodium-ion batteries are reduced to the development of materials based on carbon, metals, alloys, and transition metal oxides. Cathode materials are searched among oxides (first of all, layered) and salt systems. Synthesis of electrolytes for the sodium-ion batteries is not sufficiently attended to. Nowadays it is sodium salt solutions in organic solvents that are dominated; however, polymer and solid electrolytes with sodium conductivity may be thought of as very perspective. Reference list contains 584 items.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaA. M. Skundin & T. L. Kulova
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991, RussiaA. B. Yaroslavtsev
References
  1. Nagaura, T. and Tozawa, K., Lithium ion rechargeable battery, Prog. Batteries Solar Cells, 1990, vol. 9, p. 209.
  2. Julien, Ch., Mauger, A., Vijh, A., and Zaghib, K., Lithium Batteries. Science and Technology Switzerland: Springer Int. Publ., 2016, 626 p.
  3. Scrosati, B. and Garche, J., Lithium batteries: Status, prospects and future, J. Power Sources, 2010, vol. 195, p. 2419.
  4. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium ion batteries, Russ. Chem. Rev., 2015. vol. 84, p. 826.
  5. Tarascon, J.-M., Key challenges in future Li-battery research, Phil. Trans. R. Soc. A, 2010, vol. 368, p. 3227.
  6. Skundin, A.M., Lithium-ion batteries: What is next? in: Materialy nauchno-prakticheskoy konferentsii “Aktual’nye problem I perspektivy razvitiya litievykh KhIT” (Proc. of Research–Practical Conference “Current Problems and Perspectives of Lithium Power Sources), Almaty, Respublika Kazakhstan, September 17–19, 2012, p. 16–28.
  7. Slater, M.D., Kim, D., Lee, E., and Johnson, Ch.S., Sodium-ion batteries, Adv. Funct. Mat., 2013, vol. 23, p. 947.
  8. Sudworth, J.L., The sodium/sulphur battery, J. Power Sources, 1984, vol. 11, p. 143.
  9. Sudworth, J.L. and Tilley, A.R., Sodium Sulfur Battery, N. Y.: Chapman & Hall, 1985.
  10. Lu, X., Xia, G., Lemmon, J.P., and Yang, Zh., Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives, J. Power Sources, 2010, vol. 195, p. 2431.
  11. Lu, J., Jiang, Q., and Qin, L., The research on energystoraged application of Na/S battery, Adv. Mater. Res., 2012, vol. 443–444, p. 189.
  12. Galloway, R.C., A Sodium/Beta-Alumina/Nickel Chloride Secondary Cell, J. Electrochem. Soc., 1987, vol. 134, p. 256.
  13. Coetzer, J., A new high energy density battery system, J. Power Sources, 1986, vol. 18, p. 377.
  14. Bohm, H. and Beyermann, G., ZEBRA batteries, enhanced power by doping, J. Power Sources, 1999, vol. 84, p. 270.
  15. Sudworth, J.L., The sodium/nickel chloride (ZEBRA) battery, J. Power Sources, 2001, vol. 100, p. 149.
  16. Dustmann, C.-H., Advances in ZEBRA batteries, J. Power Sources, 2004, vol. 127, p. 85.
  17. Kim, I., Park, J.-Y., Kim, Ch.H., Park, J.-W., Ahn, J.-P., Ahn, J.-H., Kim, K.-W., and Ahn, H.-J., A room temperature Na/S battery using a ß? alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode, J. Power Sources, 2016, vol. 301, p. 332.
  18. Kim, I., Kim, Ch.H., Choi, S.H., Ahn, J.-P., Ahn, J.-H., Kim, K.-W., Cairns, E.J., and Ahn, H.-J., A singular flexible cathode for room temperature sodium/sulfur battery, J. Power Sources, 2016, vol. 307, p. 31.
  19. Lu, X., Lemmon, J.P., Kim, J.Y., Sprenkle, V.L., and Yang, Zh., High energy density Na–S/NiCl2 hybrid battery, J. Power Sources, 2013, vol. 224, p. 312.
  20. Doeff, M.M., Ma, Y., Visco, S.J., and De Jonghe, L.C., Electrochemical Insertion of Sodium into Carbon, J. Electrochem. Soc., 1993, vol. 140, p. L169.
  21. Ellis, B.L. and Nazar, L.F., Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, 2012, vol. 16, p. 168.
  22. Sung-Wook, Kim, Dong-Hwa, Seo, Xiaohua, Ma, Ceder, G., and Kisuk, Kang., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries, Advanced Energy Materials, 2012, vol. 2, p. 710.
  23. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems (Review), Energy Environ. Sci., 2012, vol. 5, p. 5884.
  24. Pan, H., Hu, Y.-S., and Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy and Environ. Sci., 2013, vol. 6, p. 2338.
  25. Jin, Y., Sun, X., Yu, Y., Ding, C., Chen, C., and Guan, Y., Research progress in sodium-ion battery materials for energy storage, Progress in Chemistry, 2014, vol. 26, p. 582.
  26. Li, H., Wu, C., Wu, F., and Bai, Y., Sodium ion battery: A promising energy-storage candidate for supporting renewable electricity, Acta Chimica Sinica, 2014, vol. 72, p. 21.
  27. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries (Review), Chem. Rev., 2014, vol. 114, p. 11636.
  28. Kubota, K. and Komaba, S., Review—Practical Issues and Future Perspective for Na-Ion Batteries, J. Electrochem. Soc, 2015, vol. 162, p. A2538.
  29. Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., and Kang, K., Recent Progress in Electrode Materials for Sodium-Ion Batteries (Review), Adv. Energy Mat., 2016, vol. 6, 1600943. doi 10.1002/aenm.201600943
  30. Nithya, C. and Gopukumar, S., Sodium ion batteries: A newer electrochemical storage (Review), Wiley Interdisciplinary Reviews: Energy and Environment, 2015, vol. 4, p. 253.
  31. Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N.-S., and Lee, K.T., Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy and Environ. Sci., 2013, vol. 6, p. 2067.
  32. Chevrier, V.L. and Ceder, G., Challenges for Na-ion Negative Electrodes, J. Electrochem. Soc., 2011, vol. 158, p. A1011.
  33. He, H., Wang, H., Tang, Y., and Liu, Y., Current studies of anode materials for sodium-ion battery, Progress in Chemistry, 2014, vol. 26, p. 572.
  34. Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., and Komaba, S., Negative electrodes for Na-ion batteries (Review), Phys. Chem. Chem. Phys., 2014, vol. 16, p. 15007.
  35. Kim, Y., Ha, K-H., Oh, S.M., and Lee, K.T., High-Capacity Anode Materials for Sodium-Ion Batteries, Chemistry—A European Journal, 2014, vol. 20, p. 11980.
  36. Wang, L.P., Yu, L., Srinivasan, M., Xu, Z.J., and Wang, X., Recent developments in electrode materials for sodium-ion batteries (Review), J. Mater. Chem. A, 2015, vol. 3, p. 9353.
  37. Bommier, C. and Ji, X., Recent development on anodes for Na-ion batteries (Review), Israel J. Chem., 2015, vol. 55, p. 486.
  38. Kang, H., Liu, Y., Cao, K., Zhao, Y., Jiao, L., Wang, Y., and Yuan, H., Update on anode materials for Na-ion batteries (Review), J. Mater. Chem. A, 2015, vol. 3, p. 17899.
  39. Stevens, D.A. and Dahn, J.R., High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries, J. Electrochem. Soc., 2000, vol. 147, p. 1271.
  40. Stevens, D.A. and Dahn, J.R., The Mechanisms of Lithium and Sodium Insertion in Carbon Materials, J. Electrochem. Soc., 2001, vol. 148, p. A803.
  41. Alcántara, R., Ortiz, G.F., Lavela, P., Tirado, J.L., Stoyanova, R., and Zhecheva, E., EPR, NMR, and electrochemical studies of surface-modified carbon microbeads, Chem. Mater., 2006, vol. 18, p. 2293.
  42. Tsai, P.-C., Chung, S.-C., Lin, S.-K., and Yamada, A., Ab initio study of sodium intercalation into disordered carbon, J. Mater. Chem. A, 2015, vol. 3, p. 9763.
  43. Gotoh, K., Ishikawa, T., Shimadzu, S., Yabuuchi, N., Komaba, S., Takeda, K., Goto, A., Deguchi, K., Ohki, S., Hashi, K., Shimizu, T., and Ishida, H., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery, J. Power Sources, 2013, vol. 225, p. 137.
  44. Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., and Fujiwara, K., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Adv. Funct. Mat., 2011, vol. 21, p. 3859.
  45. Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., and Ohsawa, Y., Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4165.
  46. Zheng, P., Liu, T., and Guo, S., Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries, Sci. Reports, 2016, vol. 6, Article number 35620.
  47. Ponrouch, A., Goñi, A.R., and Rosa Palacín, M., High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte, Electrochem. Commun., 2013, vol. 27, p. 85.
  48. Ponrouch, A. and Palacín, M.R., On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study, Electrochem. Commun., 2015, vol. 54, p. 51.
  49. Bommier, C., Luo, W., Gao, W.-Y., Greaney, A., Ma, S., and Ji, X., Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements, Carbon, 2014, vol. 76, p. 165.
  50. Prabakar, S.J.R., Jeong, J., and Pyo, M., Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries, Electrochim. Acta, 2015, vol. 161, p. 23.
  51. Thomas, P. and Billaud, D., Electrochemical insertion of sodium into hard carbons, Electrochim. Acta, 2002, vol. 47, p. 3303.
  52. Kaspar, J., Storch, M., Schitco, C., Riedel, R., and Graczyk-Zajacz, M., SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties, J. Electrochem. Soc., 2016, vol. 163, p. A156.
  53. Bai, Y., Wang, Z., Wu, C., Xu, R., Wu, F., Liu, Y., Li, H., Li, Y., Lu, J., and Amine, K., Hard carbon originated from polyvinyl chloride nanofibers as highperformance anode material for Na-ion battery, ACS Appl. Materials and Interfaces, 2015, vol. 7, p. 5598.
  54. Xiao, L., Cao, Y., Henderson, W.A., Sushko, M.L., Shao, Y., Xiao, J., Wang, W., Engelhard, M.H., Nie, Z., and Liu, J., Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Naion batteries, Nano Energy, 2016, vol. 19, p. 279.
  55. Hasegawa, G., Kanamori, K., Kannari, N., Ozaki, J.-I., Nakanishi, K., and Abe, T., Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use, ChemElectroChem., 2015, vol. 2, p. 1917.
  56. Zhao, J., Zhao, L., Chihara, K., Okada, S., Yamaki, J.-i., Matsumoto, S., Kuze, S., and Nakane, K., Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries, J. Power Sources, 2013, vol. 244, p. 752.
  57. Sun, N., Liu, H., and Xu, B., Facile synthesis of high performance hard carbon anode materials for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 20560.
  58. Hong, K.-L., Qie, L., Zeng, R., Yi, Z.-Q., Zhang, W., Wang, D., Yin, W., Wu, C., Fan, Q.-J., Zhang, W.-X., and Huang, Y.-H., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 12733.
  59. Luo, W., Bommier, C., Jian, Z., Li, X., Carter, R., Vail, S., Lu, Y., Lee, J.-J., and Ji, X., Low-surfacearea hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent, ACS Appl. Materials and Interfaces, 2015, vol. 7, p. 2626.
  60. Lv, W., Wen, F., Xiang, J., Zhao, J., Li, L., Wang, L., Liu, Z., and Tian, Y., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries, Electrochim. Acta, 2015, vol. 176, p. 533.
  61. Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C., and Mitlin, D., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes, ACS Nano, 2013, vol. 7, p. 11004.
  62. Lotfabad, E.M., Ding, J., Cui, K., Kohandehghan, A., Kalisvaart, W.P., Hazelton, M., and Mitlin, D., High- Density Sodium and Lithium Ion Battery Anodes from Banana Peels, ACS Nano, 2014, vol. 8, p. 7115.
  63. Bommier, C., Surta, T.W., Dolgos, M., and Ji, X., New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon, Nano Letters, 2015, vol. 15, p. 5888.
  64. Li, Y., Xu, S., Wu, X., Yu, J., Wang, Y., Hu, Y.-S., Li, H., Chen, L., and Huang, X., Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 71.
  65. Wenzel, S., Hara, T., Janek, J., and Adelhelm, P., Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies, Energy and Environ. Sci., 2011, vol. 4, p. 3342.
  66. Irisarri, E., Ponrouch, A., and Palacin, M.R., Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2476.
  67. Alcántara, R., Jiménez-Mateos, J.M., and Tirado, J.L., Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C, J. Electrochem. Soc., 2002, vol. 149, p. A201.
  68. Alcántara, R., Jiménez-Mateos, J.M., Lavela, P., and Tirado, J.L., Carbon black: a promising electrode material for sodium-ion batteries, Electrochem. Commun., 2001, vol. 3, p. 639.
  69. Thomas, P., Ghanbaja, J., and Billaud, D., Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4—ethylene carbonate electrolyte, Electrochim. Acta, 1999, vol. 45, p. 423.
  70. Thomas, P. and Billaud, D., Sodium electrochemical insertion mechanisms in various carbon fibres, Electrochim. Acta, 2001, vol. 46, p. 3359.
  71. Zhang, B., Kang, F., Tarascon, J.-M., and Kim, J.-K., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Progress in Mater. Sci., 2016, vol. 76, p. 319.
  72. Zhang, B., Ghimbeu, C.M., Laberty, C., Vix-Guterl, C., and Tarascon, J.-M., Correlation between Microstructure and Na Storage Behavior in Hard Carbon, Adv. Energy Mat., 2016, vol. 6, Article number 1501588.
  73. Chen, T., Liu, Y., Pan, L., Lu, T., Yao, Y., Sun, Zh., Chua, D.H.C., and Chen, Q., Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance, J. Mater. Chem. A, 2014, vol. 2, p. 4117.
  74. Jin, J., Yu, B.-J., Shi, Z.-Q., Wang, C.-Y., and Chong, C.-B., Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries, J. Power Sources, 2014, vol. 272, p. 800.
  75. Jin, J., Shi, Z.-Q., and Wang, C.-Y., Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries, Electrochim. Acta, 2014, vol. 141, p. 302.
  76. Li, W., Zeng, L., Yang, Z., Gu, L., Wang, J., Liu, X., Cheng, J., and Yu, Y., Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers, Nanoscale, 2014, vol. 6, p. 693.
  77. Luo, W., Schardt, J., Bommier, C., Wang, B., Razink, J., Simonsen, J., and Ji, X., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 10662.
  78. Wang, Z., Qie, L., Yuan, L., Zhang, W., Hu, X., and Huang, Y., Functionalized N-doped interconnected carbon nanofibers as an anode material for sodiumion storage with excellent performance, Carbon, 2013, vol. 55, p. 328.
  79. Fu, L., Tang, K., Song, K., Van Aken, P.A., Yu, Y., and Maier, J., Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale, 2014, vol. 6, p. 1384.
  80. Wang, H.-G., Wu, Z., Meng, F.-L., Ma, D.-L., Huang, X.-L., Wang, L.-M., and Zhang, X.-B., Nitrogen-doped porous carbon nanosheets as lowcost, high-performance anode material for sodiumion batteries, ChemSusChem., 2013, vol. 6, p. 56.
  81. Zhang, K., Li, X., Liang, J., Zhu, Y., Hu, L., Cheng, Q., Guo, C., Lin, N., and Qian, Y., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries, Electrochim. Acta, 2015, vol. 155, p. 174.
  82. Selvamani, V., Ravikumar, R., Suryanarayanan, V., Velayutham, D., and Gopukumar, S., Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell, Electrochim. Acta, vol. 190, p. 337.
  83. Yang, F., Zhang, Zh., Du, K., Zhao, X., Chen, W., Lai, Y., and Li, J., Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries, Carbon, 2015, vol. 91, p. 88.
  84. Tang, K., Fu, L., White, R.J., Yu, L., Titirici, M.-M., Antonietti, M., and Maier, J., Hollow carbon nanospheres with superior rate capability for sodium-based batteries, Adv. Energy Mat., 2012, vol. 2, p. 873.
  85. Cao, Y., Xiao, L., Sushko, M. L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z., Saraf, L. V., Yang, Z., and Liu, J., Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett., 2012, vol. 12, p. 3783.
  86. Shao, Y., Xiao, J., Wang, W., Engelhard, M., Chen, X., Nie, Z., Gu, M., Saraf, L.V., Exarhos, G., Zhang, J.-G., and Liu, J., Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams, Nano Lett., 2013, vol. 13, p. 3909.
  87. Song, H., Li, N., Cui, H., and Wang, C., Enhanced storage capability and kinetic processes by pores-and hetero-atoms-riched carbon nanobubbles for Lithium- ion and Sodium-ion batteries anodes, Nano Energy, 2014, vol. 4, p. 81.
  88. Lyu, Z., Yang, L., Xu, D., Zhao, J., Lai, H., Jiang, Y., Wu, Q., Li, Y., Wang, X., and Hu, Z., Hierarchical carbon nanocages as high-rate anodes for Li- and Naion batteries, Nano Research, 2015, vol. 8, p. 3535.
  89. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., and Wang, C., Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun., 2014, vol. 5, p. 4033.
  90. Pol, V.G., Lee, E., Zhou, D., Dogan, F., Calderon-Moreno, J.M., and Johnson, C.S., Spherical Carbon as a New High-Rate Anode for Sodium-ion Batteries, Electrochim. Acta, 2014, vol. 127, p. 61.
  91. Chen, T., Pan, L., Lu, T., Fu, C., Chua, D.H.C., and Sun, Z., Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1263.
  92. Yin, L., Wang, Y., Han, C., Kang, Y-M., Ma, X., Xie, H., and Wu, M., Self-assembly of disordered hard carbon/ graphene hybrid for sodium-ion batteries, J. Power Sources, 2016, vol. 305, p. 156.
  93. Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Charge?discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl) amide?potassium bis(fluorosulfonyl)amide, J. Power Sources, 2012, vol. 217, p. 479.
  94. Nam, D.-H., Hong, K.-S., Lim, S.-J., Kim, T.-H., and Kwon, H.-S., Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries, J. Phys. Chem. C, 2014, vol. 118, P. A20086.
  95. Ellis, L.D., Hatchard, T.D., and Obrovac, M.N., Reversible Insertion of Sodium in Tin, J. Electrochem. Soc., 2012, vol. 159, p. A1801.
  96. Baggetto, L., Ganesh, P., Meisner, R.P., Unocic, R.R., Jumas, J-C., Bridges, C.A., and Veith, G.M., Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory, J. Power Sources, 2013, vol. 234, p. 48.
  97. Komaba, S., Matsuura, Y., Ishikawa, T., Yabuuchi, N., Murata, W., and Kuze, S., Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell, Electrochem. Commun., 2012, vol. 21, p. 65.
  98. Datta, M.K., Epur, R., Saha, P., Kadakia, K., Park, S.K., Kumta, P.N., Tin and graphite based nanocomposites: Potential anode for sodium ion batteries, J. Power Sources, 2013, vol. 225, p. 316.
  99. Nam, D.-H., Kim, T.-H., Hong, K.-S., and Kwon, H.-S., Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries, ACS Nano, 2014, vol. 8, p. 11824.
  100. Xiao, L., Cao, Y., Xiao, J., Wang, W., Kovarik, L., Nie, Z., and Liu, J., High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications, Chem. Commun., 2012, vol. 48, p. 3321.
  101. Ji, L., Zhou, W., Chabot, V., Yu, A., and Xiao, X., Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries, ACS Appl. Mater. and Interfaces, 2015, vol. 7, p. 24895.
  102. Li, L., Seng, K.H., Li, D., Xia, Y., Liu, H.K., and Guo, Z., SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries, Nano Research, 2014, vol. 7, p. 1466.
  103. Ji, L., Gu, M., Shao, Y., Li, X., Engelhard, M.H., Arey, B.W., Wang, W., Nie, Z., Xiao, J., Wang, C., Zhang, J-G., and Liu, J., Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage, Adv. Mater., 2014, vol. 26, p. 2901.
  104. Darwiche, A., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries, Electrochem. Commun., 2013, vol. 32, p. 18.
  105. Baggetto, L., Hah, H-Y., Jumas, J-C., Johnson, C.E., Johnson, J.A., Keum, J.K., Bridges, C.A., and Veith, G.M., The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies, J. Power Sources, 2014, vol. 267, p. 329.
  106. Xu, Y., Zhu, Y., Liu, Y., and Wang, C., Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries, Adv. Energy Mat., 2013, vol. 3, p. 128.
  107. Liu, Y., Zhang, N., Jiao, L., and Chen, J., Tin Nanodots Encapsulated in Porous Nitrogen-Doped Carbon Nanofibers as a Free-Standing Anode for Advanced Sodium-Ion Batteries, Adv. Mat., 2015, vol. 27, p. 6702.
  108. Baggetto, L., Jumas, J.-C., Górka, J., Bridges, C.A., and Veith, G.M., Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using ?-Cu6Sn5 thin films as a model system, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 10885.
  109. Thorne, J.S., Dunlap, R.A., and Obrovac, M.N., (Cu6Sn5)1-xCx active/inactive nanocomposite negative electrodes for Na-ion batteries, Electrochim. Acta, 2013, vol. 112, p. 133.
  110. Lin, Y-M., Abel, P.R., Gupta, A., Goodenough, J.B., Heller, A., and Mullins, C.B., Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 8273.
  111. Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Improved cyclability of Sn–Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte, Electrochim. Acta, 2014, vol. 135, p. 60.
  112. Kim, I.T., Allcorn, E., and Manthiram, A., Cu6Sn5- TiC-C nanocomposite anodes for high-performance sodium-ion batteries, J. Power Sources, 2015, vol. 281, p. 11.
  113. González, J.R., Nacimiento, F., Alcántara, R., Ortiz, G.F., and Tirado, J.L., Electrodeposited CoSn2 on nickel open-cell foam: Advancing towards high power lithium ion and sodium ion batteries, CrystEngCommun., 2013, vol. 15, p. 9196.
  114. Abel, P.R., Fields, M.G., Heller, A., and Mullins, C.B., Tin-germanium alloys as anode materials for sodiumion batteries, ACS Applied Materials and Interfaces, 2014, vol. 6, p. 15860.
  115. Farbod, B., Cui, K., Kalisvaart, W.P., Kupsta, M., Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J., and Mitlin, D., Anodes for sodium ion batteries based on tin-germanium-antimony alloys, ACS Nano, 2014, vol. 8, p. 4415.
  116. Ellis, L., Ferguson, P.P., and Obrovac, M.N., Sodium Insertion into Tin Cobalt Carbon Active/Inactive Nanocomposite, J. Electrochem. Soc., 2013, vol. 160, p. A869.
  117. Darwiche, A., Marino, C., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Amer. Chem. Soc., 2012, vol. 134, p. 20805.
  118. Liang, L., Xu, Y., Wang, C., Wen, L., Fang, Y., Mi, Y., Zhou, M., Zhao, H., and Lei, Y., Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries, Energy and Environ. Sci, 2015, vol. 8, p. 2954.
  119. Saubanère, M., Yahia, M.B., Lemoigno, F., and Doublet, M.-L., Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries, J. Power Sources, 2015, vol. 280, p. 695.
  120. Bodenes, L., Darwiche, A., Monconduit, L., and Martinez, H., The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodiumion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 14.
  121. He, M., Kravchyk, K., Walter, M., and Kovalenko, M.V. Monodisperse antimony nanocrystals for high-rate liion and na-ion battery anodes: Nano versus bulk, Nano Lett., 2014, vol. 14, p. 1255.
  122. Baggetto, L., Ganesh, P., Sun, C-N., Meisner, R.A., Zawodzinski, T.A., and Veith, G.M., Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory, J. Mater. Chem. A, 2013, vol. 1, p. 7985.
  123. Qian, J., Chen, Y., Wu, L., Cao, Y., Ai, X., and Yang, H., High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chem. Commun., 2012, vol. 48, p. 7070.
  124. Zhu, Y., Han, X., Xu, Y., Liu, Y., Zheng, S., Xu, K., Hu, L., and Wang, C., Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode, ACS Nano, vol. 7, p. 6378.
  125. Wu, L., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy and Environmental Science, 2014, vol. 7, p. 323.
  126. Hou, H., Jing, M., Yang, Y., Zhang, Y., Song, W., Yang, X., Chen, J., Chen, Q., and Ji, X., Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries, J. Power Sources, 2015, vol. 284, p. 227.
  127. Hou, H., Yang, Y., Zhu, Y., Jing, M., Pan, C., Fang, L., Song, W., Yang, X., and Ji, X., An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries, Electrochim. Acta, 2014, vol. 146, p. 328.
  128. Ko, Y.N. and Kang, Y.C., Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials, Chem. Commun., 2014, vol. 50, p. 12322.
  129. Wang, M., Yang, Z., Wang, J., Li, W., Gu, L., and Yu, Y., Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage, Small, 2015, vol. 11, p. 5381.
  130. Wu, L., Lu, H., Xiao, L., Ai, X., Yang, H., and Cao, Y., Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 5708.
  131. Zhang, Y., Xie, J., Zhu, T., Cao, G., Zhao, X., and Zhang, S., Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route, J. Power Sources, 2014, vol. 247, p. 204.
  132. Nithya, C. and Gopukumar, S., RGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling, J. Mater. Chem. A, 2014, vol. 2, p. 10516.
  133. Zhou, X., Zhong, Y., Yang, M., Hu, M., Wei, J., and Zhou, Z., Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability, Chem. Commun., 2014, vol. 50, p. 12888.
  134. Zhou, X., Dai, Z., Bao, J., and Guo, Y-G., Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage, J. Mater. Chem. A, 2013, vol. 1, p. 13727.
  135. Fan, L., Zhang, J., Cui, J., Zhu, Y., Liang, J., Wang, L., and Qian, Y., Electrochemical performance of rodlike Sb–C composite as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 3276.
  136. Luo, W., Zhang, P., Wang, X., Li, Q., Dong, Y., and Hua, J., Antimony nanoparticles anchored in threedimensional carbon network as promising sodium-ion battery anode, J. Power Sources, 2016, vol. 304, p. 340.
  137. Baggetto, L., Marszewski, M., Górka, J., Jaroniec, M., and Veith, G.M., AlSb thin films as negative electrodes for Li-ion and Na-ion batteries, J. Power Sources, vol. 243, p. 699.
  138. Baggetto, L., Allcorn, E., Unocic, R.R., Manthiram, A., and Veith, G.M., Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 11163.
  139. Baggetto, L., Carroll, K.J., Hah, H-Y., Johnson, C.E., Mullins, D.R., Unocic, R.R., Johnson, J.A., Meng, Y.S., and Veith, G.M., Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes, J. Phys. Chem. C, 2014, vol. 118, p. 7856.
  140. Baggetto, L., Hah, H-Y., Johnson, C.E., Bridges, C.A., Johnson, J.A., and Veith, G.M., The reaction mechanism of FeSb2 as anode for sodium-ion batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 9538.
  141. Liu, J., Yang, Z., Wang, J., Gu, L., Maier, J., and Yu, Y., Three-dimensionally interconnected nickel-antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries, Nano Energy, 2015, vol. 16, p. 389.
  142. Wu, L., Pei, F., Mao, R., Wu, F., Wu, Y., Qian, J., Cao, Y., Ai, X., and Yang, H., SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries, Electrochim. Acta, 2013, vol. 87, p. 41.
  143. Kim, I.T., Allcorn, E., and Manthiram, A., High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 12884.
  144. Kim, I.T., Kim, S-O., and Manthiram, A., Effect of TiC addition on SnSbeC composite anodes for sodium-ion batteries, J. Power Sources, 2014, vol. 269, p. 848.
  145. Baggetto, L., Allcorn, E., Manthiram, A., and Veith, G.M., Cu2Sb thin films as anode for Na-ion batteries, Electrochem. Commun., 2013, vol. 27, p. 168.
  146. Nam, D-H., Hong, K-S., Lim, S-J., and Kwon, H-S., Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries, J. Power Sources, 2014, vol. 247, p. 423.
  147. Ellis, L.D., Wilkes, B.N., Hatchard, T.D., and Obrovac, M.N., In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells, J. Electrochem. Soc., 2014, vol. 161, p. A416.
  148. Legrain, F. and Manzhos, S., Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study, J. Power Sources, 2015, vol. 274, p. 65.
  149. Legrain, F., Malyi, O.I., and Manzhos, S., Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon, Comp. Mater. Sci., 2014, vol. 94, p. 214.
  150. Xu, Y., Swaans, E., Basak, S., Zandbergen, H.W., Borsa, D.M., and Mulder, F.M., Reversible na-ion uptake in Si nanoparticles, Adv. Energy Mater., 2016, vol. 6, Article number 1501436.
  151. Baggetto, L., Keum, J.K., Browning, J.F., and Veith, G.M., Germanium as negative electrode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 41.
  152. Abel, P.R., Lin, Y.-M., De Souza, T., Chou, C.-Y., Gupta, A., Goodenough, J.B., Hwang, C.S., Heller, A., and Mullins, C.B., Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material, J. Phys. Chem. C., 2013, vol. 117, p. 18885.
  153. Webb, S.A., Baggetto, L., Bridges, C.A., and Veith, G.M., The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance, J. Power Sources, 2014, vol. 248, p. 1105.
  154. Darwiche, A., Dugas, R., Fraisse, B., and Monconduit, L., Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery, J. Power Sources, 2016, vol. 304, p. 1.
  155. Su, D., Wang, C., Ahn, H., and Wang, G., Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 12543.
  156. Bian, H., Zhang, J., Yuen, M-F., Kang, W., Zhan, Y., Yu, D.Y.W., Xu, Z., and Li, Y.Y., Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes, J. Power Sources, 2016, vol. 307, p. 634.
  157. Su, D., Xie, X., and Wang, G., Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodium-Ion Batteries, Chem. Eur. J., 2014, vol. 20, p. 3192.
  158. Shimizu, M., Usui, H., and Sakaguchi, H., Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition, J. Power Sources, 2014, vol. 248, p. 378.
  159. Lu, Y.C., Ma, C., Alvarado, J., Kidera, T., Dimov, N., Meng, Y.S., and Okada, S., Electrochemical properties of tin oxide anodes for sodium-ion batteries, J. Power Sources, 2015, vol. 284, p. 287.
  160. Górka, J., Baggetto, L., Keum, J.K., Mahurin, S.M., Mayes, R.T., Dai, S., and Veith, G.M., The electrochemical reactions of SnO2 with Li and Na: A study using thin films and mesoporous carbons, J. Power Sources, 2015, vol. 284, p. 1.
  161. Liu, Y., Fang, X., Ge, M., Rong, J., Shen, C., Zhang, A., Enaya, H.A., and Zhou, C., SnO2 coated carbon cloth with surface modification as Na-ion battery anode, Nano Energy, 2015, vol. 16, p. 399.
  162. Cheng, Y., Huang, J., Li, J., Xu, Z., Cao, L., Ouyang, H., Yan, J., and Qi, H., SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance, J. Alloys and Compounds, 2016, vol. 658, p. 234.
  163. Wang, Y., Su, D., Wang, C., and Wang, G., SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 29, p. 8.
  164. Wang, Y.-X., Lim, Y.-C., Park, M.-S., Chou, S.-L., Kim, J.H., Liu, H.-K., Dou, S.-X., and Kim, Y.-J., Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances, J. Mater. Chem. A, 2014, vol. 2, p. 529.
  165. Su, D., Ahn, H-J., and Wang, G., SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance, Chem. Commun., 2013, vol. 49, p. 3131.
  166. Zhang, Y., Xie, J., Zhang, S., Zhu, P., Cao, G., and Zhao, X., Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries, Electrochim. Acta, 2015, vol. 151, P. A8.
  167. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T., Tin-based amorphous oxide: A highcapacity lithium-ion-storage material, Science, 1997, vol. 276, p. 1395.
  168. Courtney, I.A. and Dahn, J.R., Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites, J. Electrochem. Soc., 1997, vol. 144, p. 2045.
  169. Courtney, I.A. and Dahn, J.R., Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass, J. Electrochem. Soc., 1997, vol. 144, p. 2943.
  170. Wu, X., Wu, W., Zhou, Y., Huang, X., Chen, W., and Wang, Q., Synthesis and electrochemical performance of SnO2–Fe2O3 composite as an anode material for Na-ion and Li-ion batteries, Powder Technology, 2015, vol. 280, p. 119.
  171. Xu, Y., Lotfabad, E.M., Wang, H., Farbod, B., Xu, Z., Kohandehghan, A., and Mitlin, D., Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries, Chem. Commun., 2013, vol. 49, p. 8973.
  172. Wu, L., Buchholz, D., Bresser, D., Chagas, L.G., and Passerini, S., Anatase TiO2 nanoparticles for high power sodium-ion anodes, J. Power Sources, 2014, vol. 251, p. 379.
  173. Yan, Z., Liu, L., Tan, J., Zhou, Q., Huang, Z., Xia, D., Shu, H., Yang, X., and Wang, X., One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, J. Power Sources, 2014, vol. 269, p. 37.
  174. Wu, L., Bresser, D., Buchholz, D., and Passerini, S., Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A3052.
  175. Prutsch, D., Wilkening, M., and Hanzu, I., Long- Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes-Interfaces and Diffusion, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 25757.
  176. Xiong, H., Slater, M.D., Balasubramanian, M., Johnson, C.S., and Rajh, T., Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries, J. Phys. Chem. Lett., 2011, vol. 2, p. 2560.
  177. Huang, J.P., Yuan, D.D., Zhang, H.Z., Cao, Y.L., Li, G.R., Yang, H.X., and Gao, X.P., Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries, RSC Adv., 2013, vol. 3, p. 12593.
  178. Bi, Z., Paranthaman, M.P., Menchhofer, P.A., Dehoff, R.R., Bridges, C.A., Chi, M., Guo, B., Sun, X-G., and Sheng, Dai, Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries, J. Power Sources, 2013, vol. 222, p. 461.
  179. Su, D., Dou, S., and Wang, G., Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 6022.
  180. Kim, K-T., Ali, G., Chung, K.Y., Yoon, C.S., Yashiro, H., Sun, Y-K., Lu, J., Amine, K., and Myung, S-T., Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries, Nano Letters, 2014, vol. 14, p. 416.
  181. Liao, J-Y., Luna, B.D., and Manthiram, A., TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage, J. Mater. Chem. A, 2016, vol. 4, p. 801.
  182. Usui, H., Yoshioka, S., Wasada, K., Shimizu, M., and Sakaguchi, H., Nb-Doped Rutile TiO2: a Potential Anode Material for Na-Ion Battery, ACS Applied Materials & Interfaces, 2015, vol. 7, p. 6567.
  183. Pérez-Flores, J.C., Baehtz, C., Kuhn, A., and García-Alvarado, F., Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1825.
  184. Hwang, J.-Y., Myung, S.-T., Lee, J.-H., Abouimrane, A., Belharouak, I., and Sun, Y.-K., Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes, Nano Energy, 2015, vol. 16, p. 218.
  185. Lee, J., Chen, Y-M., Zhu, Z., and Vogt, B.D., Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 21011.
  186. Oh, S-M., Hwang, J-Y., Yoon, C.S., Lu, J., Amine, K., Belharouak, I., and Sun, Y-K., High Electrochemical Performances of Microsphere C-TiO2 Anode for Sodium-Ion Battery, ACS Applied Materials & Interfaces, 2014, vol. 6, p. 11295.
  187. Jung, K.-N., Seong, J-Y., Kim, S.-S., Lee, G-J., and Lee, J.-W., One-dimensional nanofiber architecture of an anatase TiO2–carbon composite with improved sodium storage performance, RSC Adv., 2015, vol. 5, p. 106252.
  188. Feng, J.-M., Dong, L., Han, Y., Li, X.-F., and Li, D.-J., Facile synthesis of graphene-titanium dioxide nanocomposites as anode materials for Na-ion batteries, Int. J. Hydrogen Energy, 2016, vol. 41, p. 355.
  189. Doeff, M.M., Cabana, J., and Shirpour, M., Titanate Anodes for Sodium Ion Batteries, J. Inorg. Organometal. Polymers and Materials, 2014, vol. 24, p. 5.
  190. Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.-M., and Palacín, M.R., Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries, Chem. Mater., 2011, vol. 23, p. 4109.
  191. Zhao, L., Qi, L., and Wang, H., Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes, J. Power Sources, 2013, vol. 242, p. 597.
  192. Rudola, A., Saravanan, K., Masona, C.W., and Balaya, P., Na2Ti3O7: an intercalation based anode for sodium-ion battery applications, J. Mater. Chem. A, 2013, vol. 1, p. 2653.
  193. Pan, H., Lu, X., Yu, X., Hu, Y.-S., Li, H., Yang, X.-Q., and Chen, L., Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodiumion batteries, Adv. Energy Mater., 2013, vol. 3, p. 1186.
  194. Wang, W., Yu, C., Liu, Y., Hou, J., Zhu, H., and Jiao, S., Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries, RSC Adv., 2013, vol. 3, p. 1041.
  195. Zou, W., Li, J., Deng, Q., Xue, J., Dai, X., Zhou, A., and Li, J., Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodiumion battery, Solid State Ionics, 2014, vol. 262, p. 192.
  196. Xu, J., Ma, C., Balasubramanian, M., and Meng, Y.S., Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery, Chem. Commun., 2014, vol. 50, p. 12564.
  197. Zhang, Y., Guo, L., and Yang, S., Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodiumion battery, Chem. Commun., 2014, vol. 50, p. 14029.
  198. Rudola, A., Sharma, N., and Balaya, P., Introducing a 0.2 V sodium-ion battery anode: The Na2Ti3O7 to Na3 - xTi3O7 pathway, Electrochem. Commun., 2015, vol. 61, p. 10.
  199. Xie, M., Wang, K., Chen, R., Li, Li, and Wu, F., A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties, Chem. Res. in Chinese Universities, 2015, vol. 31, p. 443.
  200. Wang, X., Li, Y., Gao, Y., Wang, Z., and Chen, L., Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries, Nano Energy, 2015, vol. 13, p. 687.
  201. Nava-Avendaño, J., Morales-García, A., Ponrouch, A., Rousse, G., Frontera, C., Senguttuvan, P., Tarascon, J.-M., Arroyo-de Dompablo, M.E., and Palacín, M.R., Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7, J. Mater. Chem. A, 2015, vol. 3, p. 22280.
  202. Yan, Z., Liu, L., Shu, H., Yang, X., Wang, H., Tan, J., Zhou, Q., Huang, Z., and Wang, X., A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries, J. Power Sources, 2015, vol. 274, p. 8.
  203. Zarrabeitia, M., Castillo-Martíneza, E., Del Amo, J.M.L., Eguía-Barrio, A., Muñoz-Márquez, M.Á., Rojo, T., and Casas-Cabanas, M., Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7, Acta Materialia, 2016, vol. 104, p. 125.
  204. Mukherjee, S., Bates, A., Schuppert, N., Son, B., Kim, J.G., Choi, J.S., Choi, M.J., Lee, D-H., Kwon, O., Jasinski, J., and Park, S., A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes, J. Power Sources, 2015, vol. 286, p. 276.
  205. Muñoz-Márquez, M.A., Zarrabeitia, M., Castillo-Martínez, E., Eguía-Barrio, A., Rojo, T., and Casas-Cabanas, M., Composition and Evolution of the Solid-Electrolyte Interphase in Na2Ti3O7 Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis, ACS Applied Materials & Interfaces, 2015, vol. 7, p. 7801.
  206. Wang, S., Wang, W., Zhan, P., Yuan, Y., Jiao, K., Jiao, H., and Jiao, S., 3D flower-like NaHTi3O7 nanotubes as high-performance anodes for sodiumion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16528.
  207. Yang, C-J., Chao, L-S., and Lu, F-H., Synthesis and electrochemical behaviors of nano-network NaHTi3O7 thin films on Ti/Si prepared by a hydrothermal- galvanic couple method, Surf. Coatings Technol., 2013, vol. 231, p. 521.
  208. Wu, D., Li, X., Xu, B., Twu, N., Liu, L., and Ceder, G., NaTiO2: a layered anode material for sodium-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 195.
  209. Kataoka, K. and Akimoto, J., Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure, J. Power Sources, 2016, vol. 305, p. 151.
  210. Zhang, Y., Hou, H., Yang, X., Chen, J., Jing, M., Wu, Z., Jia, X., and Ji, X., Sodium titanate cuboid as advanced anode material for sodium ion batteries, J. Power Sources, 2016, vol. 305, p. 200.
  211. Cabello, M., Ortiz, G.F., López, M.C., Alcántara, R., González, J.R., Tirado, J.L., Stoyanova, R., and Zhecheva, E., Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries, J. Alloys and Compounds, 2015, vol. 646, p. 816.
  212. Liu, C., Liang, J-Y., Han, R-R., Wang, Y-Z., Zhao, J., Huang, Q-J., Chen, J., and Hou, W-H., S-doped Na2Ti6O13@TiO2 core–shell nanorods with enhanced visible light photocatalytic performance, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 15165.
  213. Shen, K. and Wagemaker, M., Na2+xTi6O13 as Potential Negative Electrode Material for Na-Ion Batteries, Inorganic Chemistry, 2014, vol. 53, p. 8250.
  214. Liao, J.-Y. and Manthiram, A., High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage, Nano Energy, 2015, vol. 18, p. 20.
  215. Naeyaer, P.J.P., Avdeev, M., Sharma, N., Yahia, H.B., and Ling, C.D., Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material, Chem. Mater., 2014, vol. 26, p. 7067.
  216. Hou, J., Song, J., Niu, Y., Cheng, C., He, H., Li, Y., and Xu, M., Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 1827.
  217. Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H.a, Yang, X.-Q., Chen, L., and Huang, X., A zerostrain layered metal oxide as the negative electrode for long-life sodium-ion batteries, Nature Commun., 2013, vol. 4, article no. 2365.
  218. Wang, J., Qiu, B., He, X., Risthaus, T., Liu, H., Stan, M.C., Schulze, S., Xia, Y., Liu, Z., Winter, M., and Li, J., Low-Cost Orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) Compounds as Anode Materials for Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 4374.
  219. Shirpour, M., Cabana, J., and Doeff, M., Lepidocrocite- type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials, Chem. Mater., 2014, vol. 26, p. 2502.
  220. Hou, J., Niu, Y., Li, W., Yi, F., Liu, S., Li, Y., and Xu, M., Na0.56Ti1.72Fe0.28O4: a novel anode material for Na-ion batteries, RSC Advances, 2015, vol. 5, p. 88556.
  221. Shirpour, M., Cabana, J., and Doeff, M., New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems, Energy Environ. Sci., 2013, vol. 6, p. 2538.
  222. Yin, J., Qi, L., and Wang, H., Sodium Titanate Nanotubes as Negative Electrode Materials for Sodium-Ion Capacitors, ACS Applied Materials & Interfaces, 2012, vol. 4, p. 2762.
  223. Liu, J., Banis, N.M., Xiao, B., Sun, Q., Lushington, A., Li, R., Guo, J., Sham, T-K., and Sun, X., Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 24281.
  224. Zhao, L., Pan, H-L., Hu, Y-S., Li, H., and Chen, L-Q., Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery, Chinese Physics B, 2012, vol. 21, Number 2, Article No. 028201.
  225. Sun, Y., Zhao, L., Pan, H., Lu, X., Gu, L., Hu, Y-S., Li, H., Armand, M., Ikuhara, Y., Chen, L., and Huang, X., Direct atomic-scale confirmation of threephase storage mechanism in Li4Ti5O12 anodes for roomtemperature sodium-ion batteries, Nature Commun., 2013, vol. 4, p. 1870.
  226. Kitta, M., Kuratani, K., Tabuchi, M., Takeichi, N., Akita, T., Kiyobayashi, T., and Kohyama, M., Irreversible structural change of a spinel Li4Ti5O12 particle via Na insertion-extraction cycles of a sodium-ion battery, Electrochim. Acta, 2014, vol. 148, p. 175.
  227. Yu, X., Pan, H., Wan, W., Ma, C., Bai, J., Meng, Q., Ehrlich, S.N., Hu, Y-S., and Yang, X-Q., A Size- Dependent Sodium Storage Mechanism in Li4Ti5O12 Investigated by a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation, Nano Lett., 2013, vol. 13, p. 4721.
  228. Yu, P., Li, C., and Guo, X., Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films, J. Phys. Chem. C, 2014, vol. 118, p. 10616.
  229. Hasegawa, G., Kanamori, K., Kiyomura, T., Kurata, H., Nakanishi, K., and Abe, T., Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: Effects of nanoarchitectural design and temperature dependence of the rate capability, Adv. Energy Mater., 2015, vol. 5, Article No. 1400730.
  230. Kim, K.-T., Yu, C.-Y., Yoon, C.S., Kim, S.-J., Sun, Y.-K., and Myung, S-T., Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries, Nano Energy, 2015, vol. 12, p. 725.
  231. Zhou, Q., Liu, L., Tan, J., Yan, Z., Huang, Z., and Wang, X., Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance, J. Power Sources, 2015, vol. 283, p. 243.
  232. Liu, J., Tang, K., Song, K., van Aken, P.A., Yu, Y., and Maiera, J., Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20813.
  233. Ge, Y., Jiang, H., Fu, K., Zhang, C., Zhu, J., Chen, C., Lu, Y. Qiu, Y., and Zhang, X., Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries, J. Power Sources, 2014, vol. 272, p. 860.
  234. Hariharan, S., Saravanan, K., Ramar, V., and Balaya, P., A rationally designed dual role anode material for lithium- ion and sodium-ion batteries: case study of ecofriendly Fe3O4, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2945.
  235. Kumar, P.R., Jung, Y.H., Bharathi, K.K., Lim, C.H., and Kim, D.K., High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials, Electrochim. Acta, 2014, vol. 146, p. 503.
  236. Valvo, M., Lindgren, F., Lafont, U., Björefors, F., and Edström, K., Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide, J. Power Sources, 2014, vol. 245, p. 967.
  237. Jian, Z., Zhao, B., Liu, P., Li, F., Zheng, M., Chen, M., Shi, Y., and Zhou, H., Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun., 2014, vol. 50, p. 1215.
  238. Zhang, Z.-J., Wang, Y.-X., Chou, S.-L., Li, H.-J., Liu, H.-K., and Wang, J.-Z., Rapid synthesis of a-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries, J. Power Sources, 2015, vol. 280, p. 107.
  239. Yu, L., Wang, L.P., Xi, S., Yang, P., Du, Y., Srinivasan, M., and Xu, Z.J., ß-FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 5340.
  240. López, M.C., Lavela, P., Ortiz, G.F., and Tirado, J.L., Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries, Electrochem. Commun., 2013, vol. 27, p. 152.
  241. Zhao, Y., Feng, Z., and Xu, Z.J., Yolk–shell Fe2O3@C composites anchored on MWNTs with enhanced lithium and sodium storage, Nanoscale, 2015, vol. 7, p. 9520.
  242. Wen, J-W., Zhang, D-W., Zang, Y., Sun, X., Cheng, B., Ding, C-X., Yu, Y., and Chen, C-H., Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries, Electrochim. Acta, 2014, vol. 132, p. 193.
  243. Jian, Z., Liu, P., Li, F., Chen, M., and Zhou, H., Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 13805.
  244. Rahman, M.M., Glushenkov, A.M., Ramireddy, T., and Chen, Y., Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries, Chem. Commun., 2014, vol. 50, p. 5057.
  245. Liu, Y., Cheng, Z., Sun, H., Arandiyan, H., Li, J., and Ahmad, M., Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodiumion battery anode, J. Power Sources, 2015, vol. 273, p. 878.
  246. Rahman, M.M., Sultana, I., Chen, Z., Srikanth, M., Li, L.H., Dai, X.J., and Chen, Y., Ex situ electrochemical sodiation/desodiation observation of Co3O4 anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid, Nanoscale, 2015, vol. 7, p. 13088.
  247. Klavetter, K.C., Garcia, S., Dahal, N., Snider, J.L., de Souza, J.P., Cell, T.H., Cassara, M.A., Heller, A., Humphrey, S.M., and Mullins, C.B., Li- and Nareduction products of meso-Co3O4 form high-rate, stably cycling battery anode materials, J. Mater. Chem. A, 2014, vol. 2, p. 14209.
  248. Alcántara, R., Jaraba, M., Lavela, P., and Tirado, J.L., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chem. Mater., 2002, vol. 14, p. 2847.
  249. Thissen, A., Ensling, D., Madrigal, F.J.F., Jaegermann, W., Alcántara, R., Lavela, P., and Tirado, J.L., Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4, Chem. Mater., 2005, vol. 17, p. 5202.
  250. Chadwick, A.V., Savin, S.L.P., Fiddy, S., Alcántara, R., Lisbona, D.F., Lavela, P., Ortiz, G.F., and Tirado, J.L., Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-ray Absorption Spectroscopic Study, J. Phys. Chem. C, 2007, vol. 111, p. 4636.
  251. Zhou, K., Hong, Z., Xie, C., Dai, H., and Huang, Z., Mesoporous NiCo2O4 nanosheets with enhance sodium ion storage properties, J. Alloys and Compounds, 2015, vol. 651, p. 24.
  252. Wu, X., Wu, W., Wang, K., Chen, W., and He, D., Synthesis and electrochemical performance of flowerlike MnCo2O4 as an anode material for sodium ion batteries, Mater. Lett, 2015, vol. 147, p. 85.
  253. Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., and Chen, J., Porous CuO nanowires as the anode of rechargeable Na-ion batteries, Nano Research., 2014, vol. 7, p. 199.
  254. Yuan, S., Huang, X.-L., Ma, D.-L., Wang, H.-G., Meng, F.-Z., and Zhang, X.-B., Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode, Adv. Mater., 2014, vol. 26, p. 2273.
  255. Zhang, L., Wang, Y., Xie, D., Tang, Y., Wu, C., Cui, L., Li, Y., Ning, X., and Shan, Z., In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode, RSC Adv., 2016, vol. 6, p. 11441.
  256. Sun, W., Rui, X., Zhu, J., Yu, L., Zhang, Y., Xu, Z., Madhavi, S., and Yan, Q., Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage, J. Power Sources, 2015, vol. 274, p. 755.
  257. Sun, Q., Ren, Q.-Q., Li, H., and Fu, Z.-W., High capacity Sb2O4 thin film electrodes for rechargeable sodium battery, Electrochem. Commun., 2011, vol. 13, p. 1462.
  258. Zhou, X., Liu, X., Xu, Y., Liu, Y., Dai, Z., and Bao, J., An SbOx/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 23527.
  259. Hu, M., Jiang, Y., Sun, W., Wang, H., Jin, C., and Yan, M., Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 19449.
  260. Li, N., Liao, S., Sun, Y., Song, H.W., and Wang, C.X., Uniformly dispersed self-assembled growth of Sb2O3/Sb-graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability, J. Mater. Chem. A, 2015, vol. 3, p. 5820.
  261. Kim, H., Lim, E., Jo, C., Yoon, G., Hwang, J., Jeong, S., Lee, J., and Kang, K., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material, Nano Energy, 2015, vol. 16, p. 62.
  262. Wang, X., Gao, Y., Shen, X., Li, Y., Kong, Q., Lee, S., Wang, Z., Yu, R., Hu, Y.-S., and Chen, L., Anti-P2 structured Na0.5NbO2 and its negative strain effect, Energy Environ. Sci., 2015, vol. 8, p. 2753.
  263. Nakayama, H., Nose, M., Nakanishi, S., and Iba, H., Electrochemical reactions of layered niobate material as novel anode for sodium ion batteries, J. Power Sources, 2015, vol. 287, p. 158.
  264. Qin, W., Chen, T., Hu, B., Sun, Z., and Pan, L., GeO2 decorated reduced graphene oxide as anode material of sodium ion battery, Electrochim. Acta, 2015, vol. 173, p. 193.
  265. Shimizu, M., Usui, H., Fujiwara, K., Yamane, K., and Sakaguchi, H., Electrochemical behavior of SiO as an anode material for Na-ion battery, J. Alloys Comp., 2015, vol. 640, p. 440.
  266. Hamani, D., Ati, M., Tarascon, J.-M., and Rozier, P., NaxVO2 as possible electrode for Na-ion batteries, Electrochem. Commun., 2011, vol. 13, p. 938.
  267. Venkatesh, G., Pralong, V., Lebedev, O.I., Caignaert, V., Bazin, P., and Raveau, B., Amorphous sodium vanadate Na1.5 + yVO3, a promising matrix for reversible sodium intercalation, Electrochem. Commun., 2014, vol. 40, p. 100.
  268. Muller-Bouvet, D., Baddour-Hadjean, R., Tanabe, M., Huynh, L.T.N., Le, M.L.P., and Pereira-Ramos, J.P., Electrochemically formed a'-NaV2O5: A new sodium intercalation compound, Electrochim. Acta, 2015, vol. 176, p. 586.
  269. Liu, P., Zhou, D., Zhu, K., Wu, Q., Wang, Y., Tai, G., Zhang, W., and Gu, Q., Bundle-like a'-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities, Nanoscale, 2016, vol. 8, p. 1975.
  270. Liang, L., Xu, Y., Wang, X., Wang, C., Zhou, M., Fu, Q., Wu, M., and Lei, Y., Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries, J. Power Sources, 2015, vol. 294, p. 193.
  271. Hartung, S., Bucher, N., Chen, H.-Y., Al-Oweini, R., Sreejith, S., Borah, P., Yanli, Z., Kortz, U., Stimming, U., Hoster, H.E., and Srinivasan, M., Vanadium-based polyoxometalate as new material for sodium-ion battery anodes, J. Power Sources, 2015, vol. 288, p. 270.
  272. Qian, J., Xiong, Y., Cao, Y., Ai, X., and Yang, H., Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries, Nano Lett., 2014, vol. 14, p. 1865.
  273. Kim, Y., Kim, Y., Choi, A., Woo, S., Mok, D., Choi, N.S., Jung, Y.S., Ryu, J.H., Oh, S.M., and Lee, K.T., Tin phosphide as a promising anode material for Na-ion batteries, Adv. Mater., 2014, vol. 26, p. 4139.
  274. Usui, H., Sakata, T., Shimizu, M., and Sakaguchi, H., Electrochemical Na-insertion/Extraction Properties of Sn–P Anodes, Electrochemistry, 2015, vol. 83, p. 810.
  275. Jang, J.Y., Lee, Y., Kim, Y., Lee, J., and Lee, S-M., Lee, K.T., and Choi, N-S., Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 8332.
  276. Liu, S., Zhang, H., Xu, L., Ma, L., and Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries, J. Power Sources, 2016, vol. 304, p. 346.
  277. Yabuuchi, N., Matsuura, Y., Ishikawa, T., Kuze, S., Son, J-Y., Cui, Y-T., Oji, H., and Komaba, S., Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface-Stabilization Mechanism in Aprotic Solvent, ChemElectroChem., 2014, vol. 1, p. 580.
  278. Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M, and Lee, K.T., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 2013, vol. 25, p. 3045.
  279. Qian, J., Wu, X., Cao, Y., Ai, X., and Yang, H., High capacity and rate capability of amorphous phosphorus for sodium ion batteries, Angew. Chem., Intern. Ed., 2013, vol. 52, p. 4633.
  280. Mortazavi, M., Ye, Q., Birbilis, N., and Medhekar, N.V., High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights, J. Power Sources, 2015, vol. 285, p. 29.
  281. Qu, B., Ma, C., Ji, G., Xu, C., Xu, J., Meng, Y.S., Wang, T., and Lee, J.Y., Layered SnS2-reduced graphene oxide composite—A high-capacity, highrate, and long-cycle life sodium-ion battery anode material, Adv. Mater., 2014, vol. 26, p. 3854.
  282. Ma, C., Xu, J., Alvarado, J., Qu, B., Somerville, J., Lee, J.Y., and Meng, Y.S., Investigating the Energy Storage Mechanism of SnS2-rGO Composite Anode for Advanced Na-IonBatteries, Chem. Mater., 2015, vol. 27, p. 5633.
  283. Liu, J., Kopold, P., Wu, C., Van Aken, P.A., Maier, J., and Yu, Y., Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 3531.
  284. Choi, S.H. and Kang, Y.C., Synergetic Effect of Yolk- Shell Structure and Uniform Mixing of SnS-MoS2 Nanocrystals for Improved Na-Ion Storage Capabilities, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 24694.
  285. Wu, L., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 7181.
  286. Kim, Y., Kim, Y., Park, Y., Jo, Y.N., Kim, Y.-J., Choi, N.-S., and Lee, K.T., SnSe alloy as a promising anode material for Na-ion batteries, Chem. Commun., 2015, vol. 51, p. 50.
  287. Park, J., Kim, J-S., Park, J-W., Nam, T-H., Kim, K-W., Ahn, J-H., Wang, G., and Ahn, H-J., Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization, Electrochim. Acta, 2013, vol. 92, p. 427.
  288. Mortazavi, M., Wang, C., Deng, J., Shenoy, V.B., and Medhekar, N.V., Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, J. Power Sources, 2014, vol. 268, p. 279.
  289. Bang, G.S., Nam, K.W., Kim, J.Y., Shin, J., Choi, J.W., and Choi, S-Y., Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7084.
  290. Ryu, W.-H., Jung, J.-W., Park, K., Kim, S.-J., and Kim, I.-D., Vine-like MoS2 anode materials selfassembled from 1-D nanofibers for high capacity sodium rechargeable batteries, Nanoscale, 2014, vol. 6, p. 10975.
  291. Hu, Z., Wang, L., Zhang, K., Wang, J., Cheng, F., Tao, Z., and Chen, J., MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 12794.
  292. Kumar, P.R., Jung, Y.H., and Kim, D.K., High performance of MoS2 microflowers with a water-based binder as an anode for Na-ion batteries, RSC Adv., 2015, vol. 5, p. 79845.
  293. Zhu, C., Mu, X., van Aken, P.A., Yu, Y., and Maier, J., Single-Layered Ultrasmall Nanoplates of MoS2Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 2152.
  294. David, L., Bhandavat, R., and Singh, G., MoS2/graphene composite paper for sodium-ion battery electrodes, ACS Nano, 2014, vol. 8, p. 1759.
  295. Wang, Y.-X., Chou, S.-L., Wexler, D., Liu, H.-K., and Dou, S-X., High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites, Chemistry A European J., 2014, vol. 20, p. 9607.
  296. Qin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., and Sun, Zh., MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance, Electrochim. Acta, 2015, vol. 153, p. 55.
  297. Wang, J., Liu, J., Yang, H., Chao, D., Yan, J., Savilov, S.V., Lin, J., and Shen, Z.X., MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Naion storage, Nano Energy, 2016, vol. 20, p. 1.
  298. Ahmed, B., Anjum, D.H., Hedhili, M.N., and Alshareef, H.N., Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries, Small, 2015, vol. 11, p. 4341.
  299. Miki, Y., Nakazato, D., Ikuta, H., Uchida, T., and Wakihara, M., Amorphous MoS2 as the cathode of lithium secondary batteries, J. Power Sources, 1995, vol. 54, p. 508.
  300. Zhang, C., Wu, H.B., Guo, Z., and Lou, X.W., Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties, Electrochem. Commun., 2012, vol. 20, p. 7.
  301. Du, G., Guo, Z., Wang, S., Zeng, R., Chen, Z., and Liu, H., Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries, Chem. Commun., 2010, vol. 46, p. 1106.
  302. Ding, S., Zhang, D., Chen, J.S., and Lou, X.W., Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties, Nanoscale, 2012, vol. 4, p. 95.
  303. Wang, H., Lan, X., Jiang, D., Zhang, Y., Zhong, H., Zhang, Z., and Jiang, Y., Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries, J. Power Sources, 2015, vol. 283, p. 187.
  304. Ko, Y.N., Choi, S.H., Park, S.B., and Kang, Y.C., Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties, Nanoscale, 2014, vol. 6, p. 10511.
  305. Shi, Z.-T., Kang, W., Xu, J., Sun, L.-L., Wu, C., Wang, L., Yu, Y.-Q., Yu, D.Y.W., Zhang, W., and Lee, C.-S., In Situ Carbon-Doped Mo(Se0.85S0.15)2 Hierarchical Nanotubes as Stable Anodes for High- Performance Sodium-Ion Batteries, Small, 2015, vol. 11, p. 5667.
  306. Su, D., Dou, S., and Wang, G., WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances, Chem. Commun., 2014, vol. 50, p. 4192.
  307. Sun, W., Rui, X., Zhang, D., Jiang, Y., Sun, Z., Liu, H., and Dou, S., Bismuth sulfide: A high-capacity anode for sodium-ion batteries, J. Power Sources, 2016, vol. 309, p. 135.
  308. Zhu, Y., Nie, P., Shen, L., Dong, S., Sheng, Q., Li, H., Luo, H., and Zhang, X., High rate capability and superior cycle stability of a flower-like Sb2S3anode for high-capacity sodium ion batteries, Nanoscale, 2015, vol. 7, p. 3309.
  309. Liao, Y., Park, K-S., Xiao, P., Henkelman, G., Li, W., and Goodenough, J.B., Sodium Intercalation Behavior of Layered NaxNbS2 (0 = x = 1), Chem. Mater., 2013, vol. 25, p. 1699.
  310. Ryu, H.-S., Kim, J.-S., Park, J.-S., Park, J.-W., Kim, K.-W., Ahn, J.-H., Nam, T.-H., Wang, G., and Ahn, H.-J., Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature, J. Electrochem. Soc., 2013, vol. 160, p. A338.
  311. Kim, T.B., Jung, W.H., Ryu, H.S., Kim, K.W., Ahn, J.H., Cho, K.K., Cho, G.B., Nam, T.H., Ahn, I.S., and Ahn, H.J., Electrochemical characteristics of Na/FeS2 battery by mechanical alloying, J. Alloys and Compounds, 2008, vol. 449, p. 304.
  312. Li, W., Zhou, M., Li, H., Wang, K., Cheng, S., and Jiang, K., Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries, Electrochem. Commun., 2015, vol. 60, p. 74.
  313. Wu, C., Kopold, P., Ding, Y.-L., van Aken, P.A., Maier, J., and Yu, Y., Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle- Life Sodium Electrodes, ACS Nano, 2015, vol. 9, p. 6610.
  314. Yang, G., Song, H., Wu, M., and Wang, C., Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life, J. Mater. Chem. A, 2015, vol. 3, p. 18718.
  315. Wang, W., Jiang, B., Hu, L., and Jiao, S., Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1341.
  316. Senguttuvan, P., Rousse, G., Arroyo, M.E., De Dompablo, Y., Vezin, H., Tarascon, J.-M., and Palacín, M.R., Low-Potential Sodium Insertion in a NASICONType Structure through the Ti(III)/Ti(II) Redox Couple, J. Amer. Chem. Soc., 2013, vol. 135, p. 3897.
  317. Jian, Z., Zhao, L., Pan, H., Hu, Y-S., Li, H., Chen, W., and Chen, L., Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun., 2012, vol. 14, p. 86.
  318. Li, G., Jiang, D., Wang, H., Lan, X., Zhong, H., and Jiang, Y., Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, J. Power Sources, 2014, vol. 265, p. 325.
  319. Bleith, P., Kaiser, H., Novák, P., and Villevieille, C., In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries, Electrochim. Acta, 2015, vol. 176, p. 18.
  320. Lin, X., Li, P., Shao, L., Zheng, X., Shui, M., Long, N., Wang, D., and Shu, J., CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)2 as anode material for Na-ion batteries, Electrochim. Acta, 2015, vol. 169, p. 382.
  321. Li, P., Wang, P., Zheng, X., Yu, H., Qian, S., Shui, M., Lin, X., Long, N., and Shu, J., Enhanced sodium storage property of copper nitrate hydrate by carbon nanotube, J. Electroanal. Chem., 2015, vol. 755, p. 92.
  322. Senguttuvan, P., Rousse, G., Vezin, H., Tarascon, J.-M., and Palacín, M.R., Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries, Chem. Mater., 2013, vol. 25, p. 2391.
  323. Wang, D., Wu, K., Shao, L., Shui, M., Ma, R., Lin, X., Long, N., Ren, Y., and Shu J., Facile fabrication of Pb(NO3)2/C as advanced anode material and its lithium storage mechanism, Electrochim. Acta, 2014, vol. 120, p. 110.
  324. Lin, X., Shu, J., Wu, K., Shao, L., Li, P., Shui, M., Wang, D., Long, N., and Ren, Y., Improved electrochemical property of Pb(NO3)2 by carbon black, graphene and carbon nanotube, Electrochim. Acta, 2014, vol. 137, p. 767.
  325. Wu, K., Wang, D., Shao, L., Shui, M., Ma, R., Lao, M., Long, N., Ren, Y., and Shu, J., Copper nitrate hydrate as novel high capacity anode material for lithium-ion batteries, J. Power Sources, 2014, vol. 248, p. 205.
  326. Wang, L.P., Zhao, Y., Wei, C., Wong, C., Srinivasan, M., and Xu, Z.J., Polycrystalline zinc stannate as an anode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 14033.
  327. Senguttuvan, P., Rousse, G., Oró-Solé, J., Tarascon, J.-M., and Palacín, M.R., A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions, J. Mater. Chem. A, 2013, vol. 1, p. 15284.
  328. Li, W.-J., Yang, Q.-R., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Cobalt phosphide as a new anode material for sodium storage, J. Power Sources, 2015, vol. 294, p. 627.
  329. Zhao, L., Zhao, J., Hu, Y.-S., Li, H., Zhou, Z., Armand, M., and Chen, L., Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery, Advanced Energy Materials, 2012, vol. 2, p. 962.
  330. Park, Y., Shin, D-S., Woo, S.H., Choi, N.S., Shin, K.H., Oh, S.M., Lee, K.T., and Hong, S.Y., Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries, Adv. Mater., 2012, vol. 24, p. 3562.
  331. Castillo-Martínez, E., Carretero-González, J., and Armand, M., Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 5341.
  332. López-Herraiz, M., Castillo-Martínez, E., Carretero-González, J., Carrasco, J., Rojo, T., and Armand, M., Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers, Energy Environ. Sci., 2015, vol. 8, p. 3233.
  333. Choi, A., Kim, Y.K., Kim, T.K., Kwon, M-S., Lee, K.T., and Moon, H.R., 4,4'-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 14986.
  334. Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M., and Rojo, T., Carbodiimides: New materials applied as anode electrodes for sodium and lithium ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 1608.
  335. Li, Z., Zhou, J., Xu, R., Liu, S., Wang, Y., Li, P., Wu, W., and Wu, M., Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode, Chem. Eng. J., 2016, vol. 287, p. 516.
  336. Abouimrane, A., Weng, W., Eltayeb, H., Cui, Y., Niklas, J., Poluektov, O., and Amine, K., Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells, Energy and Environmental Science, 2012, vol. 5, p. 9632.
  337. Abraham, K.M., Intercalation positive electrodes for rechargeable sodium cells, Solid State Ionics, 1982, vol. 7, p. 199.
  338. Xu, J., Lee, D.H., and Meng, Y.S., Recent advances in sodium intercalation positive electrode materials for sodium ion battreies, Funct. Mater. Lett., 2013, vol. 6, Article number 1330001.
  339. Xiang, X., Zhang, K., and Chen, J., Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater., 2015, vol. 27, p. 5343.
  340. Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S., Layered oxides as positive electrode materials for Na-ion batteries, MRS Bulletin, 2014, vol. 39, p. 416.
  341. Han, M.H., Gonzalo, E., Singh, G., and Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 81.
  342. Clément, R.J., Bruce, P.G., and Grey, C.P., Review— Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials, J. Electrochem. Soc., 2015, vol. 162, p. A2589.
  343. Masquelier, C. and Croguennec, L., Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chem. Rev., 2013, vol. 113, p. 6552.
  344. Yabuuchi, N. and Komaba, S., Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries, Sci. Technol. Adv. Mater., 2014, vol. 15, Article number 043501.
  345. Toumar, A.J., Ong, S.P., Richards, W.D., Dacek, S., and Ceder, G., Vacancy Ordering in O3 -Type Layered Metal Oxide Sodium-Ion Battery Cathodes, Phys. Rev. Appl., 2015, vol. 4, Article number 064002.
  346. Delmas, C., Fouassier, C., and Hagenmuller, P., Structural classification and properties of the layered oxides, Phys. B + C, 1980, vol. 99, p. 81.
  347. Kim, S., Ma, X., Ong, S.P., and Ceder, G., A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali deintercalation, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 15571.
  348. Braconnier, J.J., Delmas, C., Fouassier, C., and Hagenmuller, P., Comportement electrochimique des phases NaxCoO2, Mat. Res. Bull., 1980, vol. 15, p. 1797.
  349. Delmas, C., Braconnier, J.-J., Fouassier, C., and Hagenmuller, P., Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ionics, 1981, vols. 3–4 (C), p. 165.
  350. Braconnier, J.J., Delmas, C., and Hagenmuller, P., Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2, Mat. Res. Bull., 1982, vol. 17, p. 993.
  351. Maazaz, A., Delmas, C., and Hagenmuller, P., A study of the NaxTiO2 system by electrochemical deintercalation, J. Inclusion Phenom., 1983, vol. 1, p. 45.
  352. Molenda, J., Delmas, C., and Hagenmuller, P., Electronic and electrochemical properties of NaxCoO2 - y cathode, Solid State Ionics, 1983, vol. 9–10, p. 431.
  353. Mendiboure, A., Delmas, C., and Hagenmuller, P., Electrochemical intercalation and deintercalation of NaxMnO2 bronzes, J. Solid State Chem., 1985, vol. 57, p. 323.
  354. Kikkawa, S., Miyazaki, S., and Koizumi, M., Electrochemical aspects of the deintercalation of layered AMO2 compounds, J. Power Sources, 1985, vol. 14, p. 231.
  355. Shacklette, L.W., Jew, T.R., and Townsend, L., Rechargeable Electrodes from Sodium Cobalt Bronzes, J. Electrochem. Soc., 1998, vol. 135, p. 2669.
  356. Doeff, M.M., Peng, M.Y., Ma, Y., and De Jonghe, L., Orthorhombic NaxMnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries, J. Electrochem. Soc., 1994, vol. 141, p. L145.
  357. Doeff, M.M., Richardson, T.J., and Kepley, L., Lithium Insertion Processes of Orthorhombic NaxMnO2- Based Electrode Materials, J. Electrochem. Soc., 1996, vol. 143, p. 2507.
  358. Sauvage, F., Laffont, L., Tarascon, J.-M., and Baudrin, E., Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2, Inorg. Chem., 2007, vol. 46, p. 3289.
  359. Hosono, E., Saito, T., Hoshino, J., Okubo, M., Saito, Y., Nishio-Hamane, D., Kudo, T., and Zhou, H., High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode, J. Power Sources, 2012, vol. 217, p. 43.
  360. Dai, K., Mao, J., Song, X., Battaglia, V., and Liu, G., Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method, J. Power Sources, 2015, vol. 285, p. 161.
  361. Qiao, R., Dai, K., Mao, J., Weng, T.-C., Sokaras, D., Nordlund, D., Song, X., Battaglia, V.S., Hussain, Z., Liu, G., and Yang, W., Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries, Nano Energy, 2015, vol. 16, p. 186.
  362. Zhou, X., Guduru, R.K., and Mohanty, P., Synthesis and characterization of Na0.44MnO2 from solution precursors, J. Mater. Chem. A, 2013, vol. 1, p. 2757.
  363. Zhao, L., Ni, J., Wang, H., and Gao, L., Na0.44MnO2- CNT electrodes for non-aqueous sodium batteries, RSC Advances, 2013, vol. 3, p. 6650.
  364. Su, D., Wang, C., Ahn, H.-J., and Wang, G., Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance, Chemistry—A European J., 2013, vol. 19, p. 10884.
  365. Ma, X., Chen, H., and Ceder, G., Electrochemical Properties of Monoclinic NaMnO2, J. Electrochem. Soc., 2011, vol. 158, p. A1307.
  366. Billaud, J., Clément, R.J., Armstrong, A.R., Canales-Vázquez, J., Rozier, P., Grey, C.P., and Bruce, P.G., ß-NaMnO2: A high-performance cathode for sodiumion batteries, J. Amer. Chem. Soc., 2014, vol. 136, p. 17243.
  367. Guo, S., Yu, H., Jian, Z., Liu, P., Zhu, Y., Guo, X., Chen, M., and Zhou, H., A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries, ChemSusChem., 2014, vol. 7, p. 2115.
  368. Cao, Y., Xiao, L., Wang, W., Choi, D., Nie, Z., Yu, J., Saraf, L.V., Yang, Z., and Liu, J., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater., 2011, vol. 23, p. 3155.
  369. Meng, Y.S., Hinuma, Y., and Ceder, G., An investigation of the sodium patterning in NaxCoO2 (0.5 = x = 1) by density functional theory methods, J. Chem. Phys., 2008, vol. 128, art. no. 104708.
  370. Bhide, A. and Hariharan, K., Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery, Solid State Ionics, 2011, vol. 192, p. 360.
  371. Berthelot, R., Carlier, D., and Delmas, C., Electrochemical investigation of the P2-NaxCoO2 phase diagram, Nat. Mater., 2011, vol. 10, p. 74.
  372. D’Arienzo, M., Ruffo, R., Scotti, R., Morazzoni, F., Mari, C.M., and Polizzi, S., Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5945.
  373. Shibata, T., Kobayashi, W., and Moritomo, Y., Intrinsic rapid Na+ intercalation observed in NaxCoO2 thin film, AIP Adv., 2013, vol. 3, Article 032104.
  374. Ding, J.J., Zhou, Y.N., Sun, Q., Yu, X.Q., Yang, X.Q., and Fu, Z.W., Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries, Electrochim. Acta, 2013, vol. 87, p. 388.
  375. Rai, A.K., Anh, L.T., Gim, J., Mathew, V., and Kim, J., Electrochemical properties of NaxCoO2 (x ~ 0.71) cathode for rechargeable sodium-ion batteries, Ceramics International, 2014, vol. 40, p. 2411.
  376. Molenda, J., Baster, D., Stoklosa, A., Gutowska, M.U., Szewczyk, A., Puzniak, R., Dybko, K., Szot, M., and Tobola, J., Correlation between electronic and electrochemical properties of NaxCoO2–y, Solid State Ionics, 2014, vol. 268, p. 179.
  377. Baster, D., Dybko, K., Szot, M., Swierczek, K., and Molenda, J., Sodium intercalation in NaxCoO2 - y— Correlation between crystal structure, oxygen nonstoichiometry and electrochemical properties, Solid State Ionics, 2014, vol. 262, p. 206.
  378. Vassilaras, P., Ma, X., Li, X., and Ceder, G., Electrochemical Properties of Monoclinic NaNiO2, J. Electrochem. Soc., 2013, vol. 160, p. A207.
  379. Han, M.H., Gonzalo, E., Casas-Cabanas, M., and Rojo, T., Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process, J. Power Sources, 2014, vol. 258, p. 266.
  380. Yabuuchi, N., Yoshida, H., and Komaba, S., Crystal Structures and Electrode Performance of Alpha- NaFeO2 for Rechargeable Sodium Batteries, Electrochemistry, 2012, vol. 80, p. 716.
  381. Zhao, J., Zhao, L., Dimov, N., Okada, S., and Nishida, T., Electrochemical and Thermal Properties of a-NaFeO2 Cathode for Na-Ion Batteries, J Electrochem. Soc., 2013, vol. 160, p. A3077.
  382. Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N., Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochem. Commun., 2010, vol. 12, p. 355.
  383. Nohira, T., Ishibashi, T., and Hagiwara, R., Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery, J. Power Sources, 2012, vol. 205, p. 506.
  384. Ding, J.-J., Zhou, Y.-N., Sun, Q., and Fu, Z.-W., Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries, Electrochem. Commun., 2012, vol. 22, p. 85.
  385. Chen, C-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA?KFSA, J. Power Sources, 2013, vol. 237, p. 52.
  386. Kubota, K., Ikeuchi, I., Nakayama, T., Takei, C., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S., New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction, J. Phys. Chem. C, 2015, vol. 119, p. 166.
  387. Xia, X. and Dahn, J.R., NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes, Electrochem. Solid-State Lett., 2012, vol. 15, p. A1.
  388. Komaba, S., Nakayama, T., Ogata, A., Shimizu, T., Takei, C., Takada, S., Hokura, A., and Nakai, I., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2, ECS Transactions, 2009, vol. 16 (42), p. 43.
  389. Didier, C., Guignard, M., Denage, C., Szajwaj, O., Ito, S., Saadoune, I., Darriet, J., and Delmas, C., Electrochemical Na-deintercalation from NaVO2, Electrochem. Solid-State Lett., 2011, vol. 14, p. A75.
  390. Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaïm, E., and Delmas, C., P2-NaxVO2 system as electrodes for batteries and electron-correlated materials, Nature Mater., 2013, vol. 12, p. 74.
  391. Lu, Z. and Dahn, J.R., Can All the Lithium be Removed from T2 Li2/3[Ni1/3Mn2/3]O2?, J. Electrochem. Soc., 2001, vol. 148, p. A710.
  392. Lu, Z. and Dahn, J.R., In Situ X-Ray Diffraction Study of P2 Na2/3[Ni1/3Mn2/3]O2, J. Electrochem. Soc., 2001, vol. 148, p. A1225.
  393. Wang, H., Yang, B., Liao, X.-Z., Xu, J., Yang, D., He, Y.-S., and Ma, Z.-F., Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges, Electrochim. Acta, 2013, vol. 113, p. 200.
  394. Lee, D.H., Xu, J., and Meng, Y.S., An advanced cathode for Na-ion batteries with high rate and excellent structural stability, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 3304.
  395. Yang, D., Liao, X.-Z., Shen, J., He, Y.-S., and Ma, Z.-F., A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 6723.
  396. Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., and Nakai, I., Study on the reversible electrode reaction of Na1–xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery, Inorg. Chem., 2012, vol. 51, p. 6211.
  397. Zhao, J., Xu, J., Lee, D.H., Dimov, N., Meng, Y.S., and Ok, S., Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries, J. Power Sources, 2014, vol. 264, p. 235.
  398. Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nature Materials, 2012, vol. 11, p. 512.
  399. Park, K., Han, D., Kim, H., Chang, W.-S., Choi, B., Anass, B., and Lee, S., Characterization of a P2-type chelating-agent-assisted Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries, RSC Adv., 2014, vol. 4, p. 22798.
  400. Kalluri, S., Hau Seng, K., Kong Pang, W., Guo, Z., Chen, Z., Liu, H.-K., and Dou, S.X., Electrospun P2- type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries, ACS Applied Materials and Interfaces, 2014, vol. 6, p. 8953.
  401. Xu, J., Chou, S.-L., Wang, J.-L., Liu, H.-K., and Dou, S.-X., Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium-Ion Batteries, ChemElectroChem., 2014, vol. 1, p. 371.
  402. Pang, W.K., Kalluri, S., Peterson, V.K., Sharma, N., Kimpton, J., Johannessen, B., Liu, H.K., Dou, S.X., and Guo, Z., Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries, Chem. Mater., 2015, vol. 27, p. 3150.
  403. Singh, G., López Del Amo, J.M., Galceran, M., Pérez-Villar, S., and Rojo, T., Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2, J. Mater. Chem. A, 2015, vol. 3, p. 6954.
  404. Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C., The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery, Dalton Trans., 2011, vol. 40, p. 9306.
  405. Bucher, N., Hartung, S., Gocheva, I., Cheah, Y.L., Srinivasan, M., and Hoster, H.E., Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries, J. Solid State Electrochem., 2013, vol. 17, p. 1923.
  406. Nghia, N.V., Ou, P.-W., and Hung, I.-M., Synthesis and Electrochemical Properties of Sodium Manganese- based Oxide Cathode Material for Sodium-ion Batteries, Electrochim. Acta, 2015, vol. 161, p. 63.
  407. Billaud, J., Singh, G., Armstrong, A.R., Gonzalo, E., Roddatis, V., Armand, M., Rojo, T., and Bruce, P.G., Na0.67Mn1 - xMgxO2 (0 = x = 0.2): a high capacity cathode for sodium-ion batteries, Energy Environ. Sci., 2014, vol. 7, p. 1387.
  408. Buchholz, D., Vaalma, C., Chagas, L.G., and Passerini, S., Mg-doping for improved long-term cyclability of layered Na-ion cathode materials ? The example of P2-type NaxMg0.11Mn0.89O2, J. Power Sources, 2015, vol. 282, p. 581.
  409. Yabuuchi, N., Hara, R., Kubota, K., Paulsen, J., Kumakura, S., and Komaba, S., A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity, J. Mater. Chem. A, 2014, vol. 2, p. 16851.
  410. Han, S.C., Lim, H., Jeong, J., Ahn, D., Park, W.B., Sohn, K-S., and Pyo, M., Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries, J. Power Sources, 2015, vol. 277, p. 9.
  411. Matsui, M., Mizukoshi, F., and Imanishi, N., Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution, J Power Sources, 2015, vol. 280, p. 205.
  412. Yoshida, H., Yabuuchi, N., and Komaba, S., NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 60.
  413. Yu, H., Guo, S., Zhu, Y., Ishida, M., and Zhou, H., Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries, Chem. Commun., 2014, vol. 50, p. 457.
  414. Ma, J., Bo, S.-H., Wu, L., Zhu, Y., Grey, C.P., and Khalifah, P.G., Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries, Chem. Mater., 2015, vol. 27, p. 2387.
  415. Kim, D., Lee, E., Slater, M., Lu, W., Rood, S., and Johnson, C.S., Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application, Electrochem. Commun., 2012, vol. 18, p. 66.
  416. Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., and Komaba, S., Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries, J. Electrochem. Soc., 2013, vol. 160, p. A3131.
  417. Yuan, D.D., Wang, Y.X., Cao, Yu.L., Ai, X.P., and Yang, H.X., Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 8585.
  418. Yuan, D., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery, Electrochim. Acta, 2014, vol. 116, p. 300.
  419. Oh, S.-M., Myung, S.-T., Yoon, C.S., Lu, J., Hassoun, J., Scrosati, B., Amine, K., and Sun, Y.-K., Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodiumion batteries using EMS electrolyte for energy storage, Nano Letters, 2014, vol. 14, p. 1620.
  420. Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J.-M., and Prakash, A.S., Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2, Chem. Mater., 2012, vol. 24, p. 1846.
  421. Li, Z.-Y., Gao, R., Sun, L., Hu, Z., and Liu, X., Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16272.
  422. Buchholz, D., Moretti, A., Kloepsch, R., Nowak, S., Siozios, V., Winter, M., and Passerini, S., Toward Naion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material, Chem. Mater., 2013, vol. 25, p. 142.
  423. Doubaji, S., Philippe, B., Saadoune, I., Gorgoi, M., Gustafsson, T., Solhy, A., Valvo, M., and Edström, K., Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES, ChemSus- Chem., 2016, vol. 9, p. 97.
  424. Yuan, D., He, W., Pei, F., Wu, F., Wu, Y., Qian, J., Cao, Y., Ai, X., and Yang, H., Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 3895.
  425. Wu, X., Guo, J., Wang, D., Zhong, G., McDonald, M.J., and Yang, Y., P2-type Na0.66Ni0.33?xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources, 2015, vol. 281, p. 18.
  426. Vassilaras, P., Toumar, A.J., and Ceder, G., Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries, Electrochem. Commun., 2014, vol. 38, p. 79.
  427. Guo, H., Wang, Y., Han, W., Yu, Z., Qi, X., Sun, K., Hu, Y.-S., Liu, Y., Chen, D., and Chen, L., Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries, Electrochim. Acta, 2015, vol. 158, p. 258.
  428. Singh, G., Aguesse, F., Otaegui, L., Goikolea, E., Gonzalo, E., Segalini, J., and Rojo, T., Electrochemical performance of NaFex(Ni0.5Ti0.5)1 ? xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery, J. Power Sources, 2015, vol. 273, p. 333.
  429. Li, X., Wu, D., Zhou, Y.-N., Liu, L., Yang, X.-Q., and Ceder, G., O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries, Electrochem. Commun., 2014, vol. 49, p. 51.
  430. Xu, J., Liu, H., and Meng, Y.S., Exploring Li substituted O3-structured layered oxides NaLixNi1/3 - xMn1/3 + xCo1/3 - xO2 (x = 0.07, 0.13, and 0.2) as promising cathode materials for rechargeable Na batteries, Electrochem. Commun., 2015, vol. 60, p. 13.
  431. Choi, M., Jo, I.-H., Lee, S.-H., Jung, Y-.I., Moon, J.-K., and Choi, W.-K., A facile synthesis and electrochemical performance of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 as cathode materials for Li and Na ion batteries, Current Applied Physics, 2016, vol. 16, p. 226.
  432. Kataoka, R., Mukai, T., Yoshizawa, A., and Sakai, T., Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2, J. Electrochem. Soc., 2013, vol. 160, p. A933.
  433. Kim, D., Kang, S.-H., Slater, M., Rood, S., Vaughey, J.T., Karan, N., Balasubramanian, M., and Johnson, C.S., Enabling sodium batteries using lithium- substituted sodium layered transition metal oxide cathodes, Adv. Energy Mater., 2011, vol. 1, p. 333.
  434. Xu, J., Lee, D.H., Clément, R.J., Yu, X., Leskes, M., Pell, A.J., Pintacuda, G., Yang, X.-Q., Grey, C.P., and Meng, Y.S., Identifying the Critical Role of Li Substitution in P2–Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) Intercalation Cathode Materials for High- Energy Na-Ion Batteries, Chem. Mater., 2014, vol. 26, p. 1260.
  435. Liu, H., Xu, J., Ma, C., and Meng, Y.S., A new O3- type layered oxide cathode with high energy/power density for rechargeable Na batteries, Chem. Commun., 2015, vol. 51, p. 4693.
  436. Guo, S., Liu, P., Yu, H., Zhu, Y., Chen, M., Ishida, M., and Zhou, H., A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., Intern. Ed., 2015, vol. 54, p. 5894.
  437. Park, K., Yu, B.-C., and Goodenough, J.B., Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery, Chem. Mater., 2015, vol. 27. p. 6682.
  438. Oh, S-M., Myung, S-T., Hassoun, J., Scrosati, B., and Sun, Y-K., Reversible NaFePO4 electrode for sodium secondary batteries, Electrochem. Commun., 2012, vol. 22, p. 149.
  439. Sun, A., Beck, F.R., Haynes, D., Poston, J.A., Jr., Narayanan, S.R., Kumta, P.N., and Manivannan, A., Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4, Mater. Sci. Engineering B, 2012, vol. 177, p. 1729.
  440. Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion 7intercalation materials, Energy Environ. Sci., 2011, vol. 4, p. 3680.
  441. Prosini, P.P., Cento, C., Masci, A., and Carewska, M., Sodium extraction from sodium iron phosphate with a Maricite structure, Solid State Ionics., 2014, vol. 263, p. 1.
  442. Kim, J., Seo, D., Kim, H., Park, I., Yoo, J.-K., Jung, S.-K., Park, Y.-U., Goddard Iii, W.A., and Kang, K., Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 540.
  443. Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F., Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 2010, vol. 22, p. 4126.
  444. Trottier, J., Hovington, P., Brochu, F., Rodrigues, I., Zaghib, K., Mauger, A., and Julien, C.M., NaFePO4 olivine as electrode materials for electrochemical cells, ECS Trans., 2011, vol. 35, p. 123.
  445. Casas-Cabanas, M., Roddatis, V.V., Saurel, D., Kubiak, P., Carretero-González, J., Palomares, V., Serras, P., and Rojo, T., Crystal chemistry of Na insertion/ deinsertion in FePO4–NaFePO4, J. Mater. Chem., 2012, vol. 22, p. 17421.
  446. Zhu, Y., Xu, Y., Liu, Y., Luo, C., and Wang, C., Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale, 2013, vol. 5, p. 780.
  447. Whiteside, A., Fisher, C.A.J., Parker, S.C., and Islam, M.S., Particle shapes and surface structures of olivine NaFePO4 in comparison to LiFePO4, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 21788.
  448. Kim, H.H., Yu, I.H., Kim, H.S., Koo, H.-J., and Whangbo, M.-H., On Why the Two Polymorphs of NaFePO4 Exhibit Widely Different Magnetic Structures: Density Functional Analysis, Inorg. Chem., 2015, vol. 54, p. 4966.
  449. Li, C., Miao, X., Chu, W., Wu, P., and Tong, D.G., Hollow amorphous NaFePO4 nanospheres as a highcapacity and high-rate cathode for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 8265.
  450. Fernández-Ropero, A.J., Saurel, D., Acebedo, B., Rojo, T., and Casas-Cabanas, M., Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries, J. Power Sources, 2015, vol. 291, p. 40.
  451. Nakayama, M., Yamada, S., Jalem, R., and Kasuga, T., Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries, Solid State Ionics, 2016, vol. 286, p. 40.
  452. Lee, K.T., Ramesh, T.N., Nan, F., Botton, G., and Nazar, L.F., Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater., 2011, vol. 23, p. 3593.
  453. Shiratsuchi, T., Okada, S., Yamaki, J., and Nishida, T., FePO4 cathode properties for Li and Na secondary cells, J. Power Sources, 2006, vol. 159, p. 268.
  454. Liu, Y., Xu, Y., Han, X., Pellegrinelli, C., Zhu, Y., Zhu, H., Wan, J., Chung, A.C., Vaaland, O., Wang, C., and Hu, L., Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes, Nano Letters, 2012, vol. 12, p. 5664.
  455. Fang, Y., Xiao, L., Qian, J., Ai, X., Yang, H., and Cao, Y., Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries, Nano Letters, 2014, vol. 14, p. 3539.
  456. Xu, S., Zhang, S., Zhang, J., Tan, T., and Liu, Y., A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique, J. Mater. Chem. A, 2014, vol. 2, p. 7221.
  457. Wang, W., Wang, S., Jiao, H., Zhan, P., and Jiao, S., A sodium ion intercalation material: A comparative study of amorphous and crystalline FePO4, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 4551.
  458. Barpanda, P., Ye, T., Nishimura, S., Chung, S.C., Yamada, Y., Okubo, M., Zhou, H.S., and Yamada, A., Sodium iron pyrophosphate: A novel 3.0 V ironbased cathode for sodium-ion batteries, Electrochem. Commun., 2012, vol. 24, p. 116.
  459. Barpanda, P., Liu, G., Ling, C.D., Tamaru, M., Avdeev, M., Chung, S.C., Yamada, Y., and Yamada, A., Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries, Chem. Mater., 2013, vol. 25, p. 3480.
  460. Kim, H., Shakoor, R.A., Park, C., Lim, S.Y., Kim, J.-S., Jo, Y.N., Cho, W., Miyasaka, K., Kahraman, R., Jung, Y., and Choi, J.W., Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study, Adv. Funct. Mater., 2013, vol. 23, p. 1147.
  461. Chen, C-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Orikasa, Y., and Uchimoto, Y., Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid, J. Power Sources, 2014, vol. 246, p. 783.
  462. Chen, C-Y., Matsumoto, K., Nohira, T., Ding, C., Yamamoto, T., and Hagiwara, R., Charge–discharge behavior of a Na2FeP2O7 positive electrode in anionic liquid electrolyte between 253 and 363 K, Electrochim. Acta, 2014, vol. 133, p 583.
  463. Longoni, G., Wang, J.E., Jung, Y.H., Kim, D.K., Mari, C.M., and Ruffo, R., The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries, J. Power Sources, 2016, vol. 302, p. 61.
  464. Honma, T., Ito, N., Togashi, T., Sato, A., and Komatsu, T., Triclinic Na2?xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery, J. Power Sources, 2013, vol. 227, p. 31.
  465. Barpanda, P., Ye, T., Avdeev, M., Chung, S.-C., and Yamada, A., A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 4194.
  466. Hautier, G., Jain, A., Chen, H., Moore, C., Ong, S.P., and Ceder, G., Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, J. Mater. Chem., 2011, vol. 21, p. 17147.
  467. Chen, H., Zivkovic, Q.O.H., Hautier, G., Du, L-S., Tang, Y., Hu, Y-Y., Ma, X., Grey, C.P., and Ceder, G., Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries, Chem. Mater., 2013, vol. 25, p. 2777.
  468. Wang, C., Sawicki, M., Emani, S., Liu, C., and Shaw, L.L., Na3MnCO3PO4—A High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries, Electrochim. Acta, 2015, vol. 161, p. 322.
  469. Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S., and Iba, H., Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries, J. Power Sources, 2013, vol. 234, p. 175.
  470. Vujkovic, M., Mitric, M., and Mentus, S., High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions, J. Power Sources, 2015, vol. 288, p. 176.
  471. Difi, S., Saadoune, I., Sougrati, M.T., Hakkou, R., Edstrom, K., and Lippens, P.-E., Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na-Ion Batteries, J. Phys. Chem. C, 2015, vol 119, p. 25220.
  472. Kim, H., Park, I., Lee, S., Kim, H., Park, K.-Y., Park, Y.-U., Kim, H., Kim, J., Lim, H.-D., Yoon, W.-S., and Kang, K., Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery, Chem. Mater., 2013, vol. 25, p. 3614.
  473. Niu, Y., Xu, M., Bao, S.-J., and Li, C.M., Porous graphene to encapsulate Na6.24Fe4.88(P2O7)4 as com posite cathode materials for Na-ion batteries, Chem. Commun., 2015, vol. 51, p. 13120.
  474. Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., Okada, S., and Yamaki, J.-i., Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte, J. Electrochem. Soc., 2010, vol. 157, p. A536.
  475. Du, K., Guo, H., Hu, G., Peng, Z., and Cao, Y., Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries, J. Power Sources, 2013, vol. 223, p. 284.
  476. Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., and Chen, L., Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 156.
  477. Shen, W., Wang, C., Liu, H., and Yang, W., Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries, Chemistry—A European J., 2013, vol. 19, p. 14712.
  478. Jung, Y.H., Lim, C.H., and Kim, D.K., Graphenesupported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 11350.
  479. Saravanan, K., Mason, C.W., Rudola, A., Wong, K.H., and Balaya, P., The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 444.
  480. Liu, J., Tang, K., Song, K., Van Aken, P.A., Yu, Y., and Maier, J., Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale, 2014, vol. 6, p. 5081.
  481. Song, W., Wu, Z., Chen, J., Lan, Q., Zhu, Y., Yang, Y., Pan, C., Hou, H., Jing, M., and Ji, X., High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion, Electrochim. Acta, 2014, vol. 146, p. 142.
  482. Zhu, C., Song, K., Van Aken, P.A., Maier, J., and Yu, Y., Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Letters, 2014, vol. 14, p. 2175.
  483. Wang, H., Jiang, D., Zhang, Y., Li, G., Lan, X., Zhong, H., Zhang, Z., and Jiang, Y., Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries, Electrochim. Acta, 2015, vol. 155, p. 23.
  484. Yang, J., Han, D.-W., Jo, M.R., Song, K., Kim, Y.-I., Chou, S.-L., Liu, H.-K., and Kang, Y.-M., Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1005.
  485. Rui, X., Sun, W., Wu, C., Yu, Y., and Yan, Q., An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network, Adv. Mater., 2015, vol. 27, p. 6670.
  486. Kang, J., Baek, S., Mathew, V., Gim, J., Song, J., Park, H., Chae, E., Rai, A.K., and Kim, J., High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 20857.
  487. Fang, Y., Xiao, L., Ai, X., Cao, Y., and Yang, H., Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries, Adv. Mater., 2015, vol. 27, p. 5895.
  488. Duan, W., Zhu, Z., Li, H., Hu, Z., Zhang, K., Cheng, F., and Chen, J., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 8668.
  489. Barker, J., Saidi, M.Y., and Swoyer, J.L., A Sodium- Ion Cell Based on the Fluorophosphate Compound NaVPO4F, Electrochem. Solid-State Lett., 2003, vol. 6, p. A1.
  490. Barker, J., Saidi, M.Y., and Swoyer, J.L., A Comparative Investigation of the Li Insertion Properties of the Novel Fluorophosphate Phases, NaVPO4F and LiVPO4F, J. Electrochem. Soc., 2004, vol. 151, p. A1670.
  491. Zhuo, H., Wang, X., Tang, A., Liu, Z., Gamboa, S., and Sebastian, P.J., The preparation of NaV1 - xCrxPO4F cathode materials for sodium-ion battery, J. Power Sources, 2006, vol. 160, p. 698.
  492. Lu, Y., Zhang, S., Li, Y., Xue, L., Xu, G., and Zhang, X., Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries, J. Power Sources, 2014, vol. 247, p. 770.
  493. Ruan, Y-L., Wang, K., Song, S-D., Han, X., and Cheng, B-W., Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries, Electrochim. Acta, 2015, vol. 160, p. 330.
  494. Zhao, J., He, J., Ding, X., Zhou, J., Ma, Y., Wu, S., and Huang, R., A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries, J. Power Sources, 2010, vol. 195, p. 6854.
  495. Barker, J., Gover, R.K.B., Burns, P., and Bryan, A.J., Hybrid-Ion. A Lithium-Ion Cell Based on a Sodium Insertion Material, Electrochem. Solid-State Lett., 2006, vol. 9, p. A190.
  496. Barker, J., Gover, R.K.B., Burns, P., and Bryan, A.J., Li4/3Ti5/3O4||Na3V2(PO4)2F3: An Example of a Hybrid-Ion Cell Using a Non-graphitic Anode, J. Electrochem. Soc., 2007, vol. 154, p. A882.
  497. Ellis, B.L., Makahnouk, W.R.M., Makimura, Y., Toghill, K., and Nazar, L.F., A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nature Materials, 2007, vol. 6, p. 749.
  498. Recham, N., Chotard, J.-N., Dupont, L., Djellab, K., Armand, M., and Tarascon, J.-M., Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials, J. Electrochem. Soc., 2009, vol. 156, p. A993.
  499. Ellis, B.L., Michael Makahnouk, W.R., Rowan-Weetaluktuk, W.N., Ryan, D.H., and Nazar, L.F., Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A=Na, Li; M=Fe, Mn, Co, Ni), Chem Mater., 2010, vol. 22, p. 1059.
  500. Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Nakai, I., and Komaba, S., Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries, Electrochem. Commun., 2011, vol. 13, p. 1225.
  501. Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Nakai, I., and Komaba, S., A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries, Electrochemistry, 2012, vol. 80, p. 80.
  502. Tripathi, R., Wood, S.M., Islam, M.S., and Nazar, L.F., Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4, Energy Environ. Sci., 2013, vol. 6, p. 2257.
  503. Yan, J., Liu, X., and Li, B., Nano-assembled Na2FePO4F/ carbon nanotubemulti-layered cathodes for Na-ion batteries, Electrochem. Commun., 2015, vol. 56, p. 46.
  504. Vidal-Abarca, C., Lavela, P., Tirado, J.L., Chadwick, A.V., Alfredsson, M., and Kelder, E., Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent, J. Power Sources, 2012, vol. 197, p. 314.
  505. Gover, R.K.B., Bryan, A., Burns, P., and Barker, J., The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics, 2006, vol. 177, p. 1495.
  506. Jiang, T., Chen, G., Li, A., Wang, C., and Wei, Y., Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries, J. Alloys and Comp., 2009, vol. 478, p. 604.
  507. Shakoor, R.A., Seo, D-H., Kim, H., Park, Y-U., Kim, J., Kim, S-W, Gwon, H., Lee, S., and Kang, K., A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries, J. Mater. Chem., 2012, vol. 22, p. 20535.
  508. Chihara, K., Kitajou, A., Gocheva, I.D., Okada, S., and Yamaki, J-i., Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries, J. Power Sources, 2013, vol. 227, p. 80.
  509. Matts, I.L., Dacek, S., Pietrzak, T.K., Malik, R., and Ceder, G., Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First- Principles Mobility Calculations, Chem. Mater., 2015, vol. 27, p. 6008.
  510. Serras, P., Palomares, V., Goñi, A., Kubiak, P., and Rojo, T., Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3 ? 2x/C as cathode for sodium-ion batteries, J. Power Sources, 2013, vol. 241, p. 56.
  511. Sauvage, F., Quarez, E., Tarascon, J.-M., and Baudrin, E., Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci., 2001, vol. 8, p. 1215.
  512. Park, Y.-U., Seo, D.-H., Kwon, H.-S., Kim, B., Kim, J., Kim, H., Kim, I., Yoo, H.-I., and Kang, K., A new high-energy cathode for a Na-ion battery with ultrahigh stability, J. Amer. Chem. Soc., 2013, vol. 135, p. 13870.
  513. Serras, P., Palomares, V., Kubiak, P., Lezama, L., and Rojo, T., Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating, Electrochem. Commun., 2013, vol. 34, p. 344.
  514. Park, Y.-U., Seo, D.-H., Kim, H., Kim, J., Lee, S., Kim, B., and Kang, K., A family of high-performance cathode materials for Na-ion batteries, Na(VO1–xPO4)2F1 + 2x (0 = x = 1): Combined firstprinciples and experimental study, Adv. Func. Mater., 2014, vol. 24, p. 4603.
  515. Yaghoobnejad Asl, H., Stanley, P., Ghosh, K., and Choudhury, A., Iron Borophosphate as a Potential Cathode for Lithium- and Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 7058.
  516. Singh, P., Shiva, K., Celio, H., and Goodenough, J.B., Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 3000.
  517. Uchaker, E., Zheng, Y.Z., Li, S., Candelaria, S.L., Hu, S., and Cao, G.Z., Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 18208.
  518. Su, D.W., Dou, S.X., and Wang, G.X., Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 11185.
  519. Su, D., Dou, S., and Wang, G., Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries, ChemSusChem., 2015, vol. 8, p. 2877.
  520. Li, H.-Y., Yang, C.-H., Tseng, C.-M., Lee, S.-W., Yang, C.-C., Wu, T.-Y., and Chang, J.-K., Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries, J. Power Sources, 2015, vol. 285, p. 418.
  521. Kim, H., Kim, R-H., Lee, S-S., Kim, Y., Kim, D.Y., and Park, K., Effects of Ni Doping on the Initial Electrochemical Performance of Vanadium Oxide Nanotubes for Na-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 11692.
  522. Shao, J., Ding, Y., Li, X., Wan, Z., Wu, C., Yang, J., Qu, Q., and Zheng, H., Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries, J. Mater. Chem. A., 2013, vol. 1, p. 12404.
  523. Venkatesh, G., Pralong, V., Lebedev, O.I., Caignaert, V., Bazin, P., and Raveau, B., Amorphous sodium vanadate Na1.5 + yVO3, a promising matrix for reversible sodium intercalation, Electrochem. Commun., 2014, vol. 40, p. 100.
  524. Liu, H., Zhou, H., Chen, L., Tang, Z., and Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries, J. Power Sources, 2011, vol. 196, p. 814.
  525. Arai, H., Okada, S., Sakurai, Y., and Honma, J.-i., Cathode performance and voltage estimation of metal trihalides, J. Power Sources, 1997, vol. 68, p. 716.
  526. Gocheva, I.D., Nishijima, M., Doi, T., Okada, S., Yamaki, J.-i., and Nishida, T., Mechanochemical synthesis of NaMF3 (M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries, J. Power Sources, 2009, vol. 187, p. 247.
  527. Nishijima, M., Gocheva, I.D., Okada, S., Doi, T., Yamaki, J-i., and Nishida, T., Cathode properties of metal trifluorides in Li and Na secondary batteries, J. Power Sources, 2009, vol. 190, p. 558.
  528. Yamada, Y., Doi, T., Tanaka, I., Okada, S., and Yamaki, J.-i., Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries, J. Power Sources, 2011, vol. 196, p. 4837.
  529. Kitajou, A., Komatsu, H., Chihara, K., Gocheva, I.D., Okada, S., and Yamaki, J-i., Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery, J. Power Sources, 2012, vol. 198, p. 389.
  530. Li, C., Yin, C., Gu, L., Dinnebier, R.E., Mu, X., van Aken, P.A., and Maier, J., An FeF3 · 0.5H2O polytype: A microporous framework compound with intersecting tunnels for li and na batteries, J. Amer. Chem. Soc., 2013, vol. 135, p. 11425.
  531. Ma, D-l., Wang, H-g., Li, Y., Xu, D., Yuan, S., Huang, X.-l., Zhang, X.-b., and Zhang, Y., In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries, Nano Energy, 2014, vol. 10, p. 295.
  532. Lee, L., Sahgong, S., Johnson, C.S., and Kim, Y., Comparative electrochemical sodium insertion/ extraction behavior inlayered NaxVS2 and NaxTiS2, Electrochim. Acta, 2014, vol. 143, p. 272.
  533. Chen, G-Y., Sun, Q., Yue, J-L., Shadike, Z., Yang, Y., Ding, F., Sang, L., and Fu, Z-W., Conversion and displacement reaction types of transition metal compounds for sodium ion battery, J. Power Sources, 2015, vol. 284, p. 115.
  534. Qian, J., Zhou, M., Cao, Y., Ai, X., and Yang, H., Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries, Adv. Ener. Mat., 2012, vol. 2, p. 410.
  535. Zhou, M., Zhu, L., Cao, Y., Zhao, R., Qian, J., Ai, X., and Yang, H., Fe(CN)6-4-doped polypyrrole: a highcapacity and high-rate cathode material for sodiumion batteries, RSC Adv., 2012, vol. 2, p. 5495.
  536. Lee, H., Kim, Y-I., Park, J-K., and Choi, J.W., Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, vol. 48, p. 8416.
  537. Lu, Y., Wang, L., Cheng, J., and Goodenough, J.B., Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun., 2012, vol. 48, p. 6544.
  538. Matsuda, T., Takachia, M., and Moritomo, Y., A sodium manganese ferrocyanide thin film for Naion batteries, Chem. Commun., 2013, vol. 49, p. 2750.
  539. Wang, L., Lu, Y., Liu, J., Xu, M., Cheng, J., Zhang, D., and Goodenough, J.B., A superior low-cost cathode for a Na-Ion battery, Angew. Chem., Intern. Ed., 2013, vol. 52, p. 1964.
  540. Lee, H-W., Wang, R.Y., Pasta, M., Lee, S.W., Liu, N., and Cui, Y., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries, Nature Commun., 2014, vol. 5, art. no. 5280.
  541. You, Y., Wu, X-L., Yin, Y-X., and Guo, Y-G., Highquality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci., 2014, vol. 7, p. 1643.
  542. Dai, Y., Zhang, Y., Gao, L., Xu, G., and Xie, J., A Sodium Ion Based Organic Radical Battery, Electrochem. Solid-State Lett., 2010, vol. 13, p. A22.
  543. Zhao, R., Zhu, L., Cao, Y., Ai, X., and Yang, H.X., An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries, Electrochem. Commun., 2012, vol. 21, p. 36.
  544. Chihara, K., Chujo, N., Kitajou, A., and Okada, S., Cathode properties of Na2C6O6 for sodium-ion batteries, Electrochim. Acta, 2013, vol. 110, p. 240.
  545. Shen, Y.F., Yuan, D.D., Ai, X.P., Yang, H.X., and Zhou, M., Poly(diphenylaminesulfonic acid sodium) as a cation-exchanging organic cathode for sodium batteries, Electrochem. Commun., 2014, vol. 49, p. 5.
  546. Deng, W., Shen, Y., Qian, J, Cao, Y., and Yang, H., A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 21095.
  547. Guo, C., Zhang, K., Zhao, Q., Pei, L., and Chen, J., High-performance sodium batteries with the 9,10- anthraquinone/CMK-3 cathode and an ether-based electrolyte, Chem. Commun., 2015, vol. 51, p. 10244.
  548. Wang, H.-G., Yuan, S., Ma, D.-L., Huang, X.-L., Meng, F.-L., and Zhang, X-B., Tailored aromatic carbonyl derivative polyimides for high-power and longcycle sodium-organic batteries, Adv. Energy Mater., 2014, vol. 4, Article number 1301651
  549. Zhu, L., Shen, Y., Sun, M., Qian, J., Cao, Y., Ai, X., and Yang, H., Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries, Chem. Commun., 2013, vol. 49, p. 11370.
  550. Deng, W.W., Liang, X.M., Wu, X.Y., Qian, J.F., Cao, Y.L., Ai, X.P., Feng, J.W., and Yang, H.X., A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode, Sci. Rep., 2013, vol. 3, article number 2671.
  551. Ponrouch, A., Dedryvère, R., Monti, D., Demet, A.E., Ateba Mba, J.M., Croguennec, L., Masquelier, C., Johansson, P., and Palacín, M.R., Towards high energy density sodium ion batteries through electrolyte optimization, Energy and Environmental Sci., 2013, vol. 6, p. 2361.
  552. Sawicki, M. and Shaw, L.L., Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv., 2015, vol. 5, p. 53129.
  553. Vignarooban, K., Kushagra, R., Elango, A., Badami, P., Mellander, B-E., Xu, X., Tucker, T.G., Nam, C., and Kannan, A.M., Current trends and future challenges of electrolytes for sodium-ion batteries, Int. J. Hydrogen Energy, 2016, vol. 41, p. 2829.
  554. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., and Palacín, M.R., In search of an optimized electrolyte for Na-ion batteries, Energy and Environmental Science, 2012, vol. 5, p. 8572.
  555. Yoon, D., Kim, D.H., Chung, K.Y., Chang, W., Kim, S.M., and Kim, J., Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity, Carbon, 2016, vol. 98, p. 213.
  556. Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., Kubota, K., Fukunishi, M., Shibahara, S., Son, J.-Y., Cui, Y.-T., Oji, H., and Komaba, S., Sodium carboxymethyl cellulose as a potential binder for hardcarbon negative electrodes in sodium-ion batteries, Electrochem. Commun., 2014, vol. 44, p. 66.
  557. Ding, C., Nohira, T., Kuroda, K., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, J Power Sources, 2013, vol. 238, p. 296.
  558. Ding, C., Nohira, T, Hagiwara, R., Matsumoto, K., Okamoto, Y., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Na[FSA]-[C3C1pyr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, J. Power Sources, 2014, vol. 269, p. 124.
  559. Monti, D., Jónsson, E., Palacín, M.R., and Johansson, P., Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity, J. Power Sources, 2014, vol. 245, p. 630.
  560. Wongittharom, N., Wang, C., Wang, Y., Yang, C., and Chang, J., Ionic Liquid Electrolytes with Various Sodium Solutes for Rechargeable Na/NaFePO4 Batteries Operated at Elevated Temperatures, Appl Mater. Interfaces, 2014, vol. 6, p. 17564.
  561. Wongittharom, N., Lee, T.-C., Wang, C.-H., Wang, Y.-C., and Chang, J.-K., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes, J. Mater. Chem. A, 2014, vol. 2, p. 5655.
  562. Wang, C.-H., Yeh, Y.-W., Wongittharom, N., Wang, Y.-C., Tseng, C.-J., Lee, S.-W., Chang, W.-S., and Chang, J.-K., Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes, J. Power Sources, 2015, vol. 274, p. 1016.
  563. Matsumoto, K., Tanikia, R., Nohira, T., and Hagiwara, R., Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A1409.
  564. Ding, C., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., and Nitta, K., Electrochemical performance of hard carbon negative electrodes for ionic liquidbased sodium ion batteries over a wide temperature range, Electrochim. Acta, 2015, vol. 176, p. 344
  565. Noor, S.A.M., Yoon, H., Forsyth, M., and MacFarlane, D.R., Gelled ionic liquid sodium ion conductors for sodium batteries, Electrochim. Acta, 2015, vol. 169, p. 376.
  566. Hasa, I., Passerini, S., and Hassoun, J., Characteristics of an ionic liquid electrolyte for sodium-ion batteries, J. Power Sources, 2016, vol. 303, p. 203
  567. Hashmi, S. and Chandra, S., Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6, Material Sci. Eng., 1995, vol. B34, p. 18.
  568. Thakur, A.K., Upadhyaya, H.M., Hashmi, S.A., and Verma, A.L., Polyethylene oxide based sodium ion conducting composite polymer electrolytes dispersed with Na2SiO3, Indian J. Pure Appl. Phys., 1999, vol. 37, p. 302.
  569. Bhargav, P.B., Mohan, V.M., Sharma, A.K., and Rao, V.V.R.N., Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications, Ionics, 2007, vol. 13, p. 44.
  570. Osman, Z., Isa, K.B.M., Ahmad, A., and Othman, L., A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes, Ionics, 2010, vol. 16, p. 431.
  571. Chandra, A., Chandra, A., and Thakur, K., Na+ ion conducting hot-pressed nano composite polymer electrolytes, Port. Electrochim. Acta, 2012, vol. 30, p. 81.
  572. Cao, C., Wang, H., Liu, W., Liao, X., and Li, L., Nafion membranes as electrolyte and separator for sodium-ion battery, Int. J. Hydrogen Energy, 2014, vol. 39, p. 16110.
  573. Boschin, A. and Johansson, P., Characterization of NaX (X: TFSI, FSI)—PEO based solid polymer electrolytes for sodium batteries, Electrochim. Acta, 2015, vol. 175, p. 124.
  574. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), vol. 2. St. Petersburg State Univ, 2010.
  575. Evstigneeva, M.A., Nalbandyan, V.B., Petrenko, A.A., Medvedev, B.S., and Kataev, A.A., A new family of fast sodium ion conductors: Na2M2TeO6 (M=Ni, Co, Zn, Mg), Chem. Mater., 2011, vol. 23, p. 1174.
  576. Smaha, R.W., Roudebush, J.H., Herb, J.T., Seibel, E.M., Krizan, J.W., Fox, G.M., Huang, Q., Arnold, C.B., and Cava, R.J., Tuning Sodium Ion Conductivity in the Layered Honeycomb Oxide Na3 ? xSn2–xSbxNaO6, Inorg. Chem., 2015, vol. 54, p. 7985.
  577. Hibi, Y., Tanibata, N., Hayashi, A., and Tasumisago, M., Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ionics, 2015, vol. 270, p. 6.
  578. Peet, J.R., Widdifield, C.M., Apperley, D.C., Hodgkinson, P., Johnson, M.R., and Radosavljevic Evans, I., Na+ mobility in sodium strontium silicate fast ion conductors, Chem. Commun., 2015, vol. 51, p. 17163.
  579. Hayashi, A., Noi, K., Tanibata, N., Nagao, M., and Tatsumisago, M., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources, 2014, vol. 258, p. 420.
  580. Onchi, T., A material design on new sodium ion conductor for sodium–sulfur battery. I. NaAlO(CN)2 and NaxAl1–x/3(CN)3 perovskite, Quantum Chem., 2012, vol. 112, p. 3777.
  581. Kim, J.-K., Lim, Y.J., Kim, H., Cho, G.-B., and Kim, Y., A hybrid solid electrolyte for flexible solidstate sodium batteries, Energy Environ. Sci., 2015, vol. 8, p. 3589.
  582. Kim, Y., Kim, H., Park, S., Seo, I., and Kim, Y., Na ion Conducting Ceramic as Solid Electrolyte for Rechargeable Seawater Batteries, Electrochim. Acta, 2016, vol. 191, p. 1.
  583. Oh, S-M., Myung, S-T., Jang, M-W., Scrosati, B., Hassoun, J., and Sun, Y-K., An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide framework cathode, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 3827.
  584. Zhang, J., Yin, Y.-X., and Guo, Y.-G., High-Capacity Te Anode Confined in Microporous Carbon for Long- Life Na-Ion Batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 27838.