Examples



mdbootstrap.com



 
Статья
2020

Phenolcarboxylic Acids in the Reaction with Electrogenerated Hydroperoxyl Radical


N. I. BelayaN. I. Belaya, A. V. BelyiA. V. Belyi, O. M. ZarechnayaO. M. Zarechnaya, I. N. ShcherbakovI. N. Shcherbakov, V. S. DoroshkevichV. S. Doroshkevich
Российский журнал общей химии
https://doi.org/10.1134/S1070363220100023
Abstract / Full Text

Using the chronovoltammetric method, it has been shown that the reduction of oxygen on a mercury electrode in the presence of phenolcarboxylic acids in an acidic medium occurs as reversible electrode process followed by rate-limiting chemical reaction involving the hydroperoxyl radical. The rate constants of the phenolcarboxylic acids reaction with the radical have been calculated using the theory of electrode process followed by chemical reaction. The suggested reaction mechanism (electron transfer from the acid molecular form to the radical) has been confirmed by the correlation between the experimental rate constants and the ionization potentials of phenolcarboxylic acids simulated using the DFT method.

Author information
  • Donetsk National University, 83001, Donetsk, UkraineN. I. Belaya, A. V. Belyi & V. S. Doroshkevich
  • L.M. Litvinenko Institute of Physical and Organic Chemistry and Coal Chemistry, 83114, Donetsk, UkraineO. M. Zarechnaya
  • Southern Federal University, 344006, Rostov-on-Don, RussiaI. N. Shcherbakov
References
  1. Perevozkina, M.G., Testirovanie antioksidantnoi aktivnosti polifunktsional’nykh soedinenii kineticheskimi metodami (Testing the Antioxidant Activity of Polyfunctional Compounds by Kinetic Methods), Novosibirsk: SibAK, 2014.
  2. Men’shchikova, E.B., Lankin, V.Z., and Kandalintseva, N.V.,Phenolic Antioxidants in Biology and Medicine. Structure, Properties, Mechanisms of Action, Saarbrücken: Lap Lambert Academic Publishing, 2012.
  3. Galano, A. and Perez-Gonzalez, A., Theor. Chem. Accounts, 2012, vol. 131, no. 9, p. 1. https://doi.org/10.1007/s00214-012-1265-0
  4. Marković, Z., Ðorović, J., Dimitrić Marković, J.M., Živić, M., and Amić, D., Monatsh. Chem., 2014, vol. 145, no. 6, p. 953. https://doi.org/10.1007/s00706-014-1163-3
  5. Marino, T., Galano, A., and Russo, N., J. Phys. Chem., 2014, vol. 118, no. 35, p. 10380. https://doi.org/10.1021/jp505589b
  6. Sevgi, K., Tepe, B., and Sarikurkcu, C., Food Chem. Toxicol., 2015, vol. 77, p. 12.
  7. Medina, M.E., Galano, A., and Trigos, Á., J. Phys. Chem. (B), 2018, vol. 122, no. 30, p. 7514. https://doi.org/10.1021/acs.jpcb.8b04619
  8. Vermerris, W. and Nicholson, R., Phenolic Compound Biochemistry, Dodrecht: Springer, 2006.
  9. Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: Mir: Binom Laboratoriya Znanii, 2003.
  10. Heyrovský, M. and Vavřička, S., J. Electroanal. Chem., 1993, vol. 353, p. 335.
  11. Heyrovský, M. and Vavřička, S., J. Electroanal. Chem., 1992, vol. 332, p. 309.
  12. Hayyan, M., Hashim, M.A., and Alnashef, I.M., Chem. Rev., 2016, vol. 116, no. 5, p. 3029. https://doi.org/10.1021/acs.chemrev.5b00407
  13. Tur’yan, Y.I., Gorenbein, P., and Kohen, R., J. Electroanal. Chem., 2004, vol. 571, no. 2, p. 183. https://doi.org/10.1016/j.jelechem.2004.05.008
  14. Marvin 18.14. ChemAxon. https://www.chemaxon.com
  15. Bo-Tao, Z., Li-Xia, Z., and Jin-Ming, L., J. Environ. Sci., 2008, vol. 20, no. 8, p. 1006. https://doi.org/10.1016/s1001-0742(08)62200-7
  16. Korotkova, E.I., Karbainov, Y.A., and Avramchik, O.A., Anal. Bioanal. Chem., 2003, vol. 375, p. 465. https://doi.org/10.1007/s00216-002-1687-y
  17. Sazhina, N.N., Misin, V.M., and Korotkova, E.I., Khim. Rastit. Syr’ya, 2010, no. 4, p. 77.
  18. Mairanovskii, C.G., Kataliticheskie i kineticheskie toki v polyarografii (Catalytic and Kinetic Currents in Polarography), Moscow: Nauka, 1966.
  19. Nicholson, R.S. and Shain, I., Anal. Chem., 1964, vol. 36, no. 4, p. 706. https://doi.org/10.1021/ac60210a007
  20. Galus, Z., Fundamentals of Electrochemical Analysis, Ellis Horwood, 1976.
  21. Gorokhovskaya, V.I. and Gorokhovskii, V.M., Praktikum po elektrokhimicheskim metodam analiza (Workshop on Electrochemical Analysis Methods), Moscow: Vysshaya Shkola, 1983.
  22. Korotkova, E.I., Doctoral (Chem.) Dissertation, Tomsk, 2009.
  23. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., and Russo, N., Annu. Rev. Food Sci. Technol., 2016, vol. 7, p. 335. https://doi.org/10.1146/annurev-food-041715-033206
  24. Milenković, D., Yorović, J., Jeremić, S., Marković, J.M.D., Avdović, E.H., and Marković, Z., J. Chem., 2017, vol. 2017, p. 1. https://doi.org/10.1155/2017/5936239
  25. Volkov, V.A. and Misin, V.M., Kinetics and Catalysis, 2015, vol. 56, no. 1, p. 43. https://doi.org/10.1134/S0023158415010139
  26. Mazzone, G., Russo, N., and Toscano, M., Comput. Theoret. Chem., 2016, vol. 1077, p. 39. https://doi.org/10.1016/j.comptc.2015.10.011
  27. Belaya, N.I., Belyi, A.V., Zarechnaya, O.M., Scherbakov, I.N., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1351. https://doi.org/10.1134/S1070363218070010
  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision B.01 Gaussian, Inc., WallingfordCT, 2010.
  29. Galano, A. and Alvarez-Idaboy, J.R., Int. J. Quantum. Chem., 2019, vol. 119, p. 1. https://doi.org/10.1002/qua.25665
  30. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. (B), 2009, vol. 113, p. 6378. https://doi.org/10.1021/jp810292n
  31. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. https://doi.org/10.1021/cr9904009
  32. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier Science, 2003.
  33. GOST 32937–2014., Moscow: Standartinform, 2016.
  34. Henze, G. and Thomas, F.G., Introduction to Voltammetric Analysis: Theory and Practice, Australia: CSIRO, 2008.