Статья
2017

Theoretical Analysis of the Effect of Ion Concentration in Solution Bulk and at Membrane Surface on the Mass Transfer at Overlimiting Currents


A. M. Uzdenova A. M. Uzdenova , A. V. Kovalenko A. V. Kovalenko , M. Kh. Urtenov M. Kh. Urtenov , V. V. Nikonenko V. V. Nikonenko
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517110179
Abstract / Full Text

Overlimiting current modes are of considerable interest for the practice of electrodialysis (ED). However, the economical expedience of such ED modes is evident only for desalination of dilute solutions. Here, we show the theoretical analysis of the effect of concentration on the behavior of an ED cell with homogeneous ion-exchange membranes. The study is based on numerical solution of the two-dimensional system of coupled equations of Nernst–Planck–Poisson–Navier–Stokes. It is shown that as the electrolyte concentration in solution that enters the ED desalination chamber increases, the intensity of electroconvection decreases, which induces a decrease in the relative mass-transfer rate (the decrease in the ratio of current density to its limiting value). This effect is stronger in the region of high potential differences where the electroconvective instability of Rubinstein–Zaltzman is realized under the conditions of a nonuniform concentration field caused by solution desalination. In contrast, the increase in the counterion concentration at the membrane surface (associated with the increase in the surface charge) intensifies the electroconvection.

Author information
  • Karachaevo-Cherkessky State University Named after U.D. Aliev, Karachaevsk, 369202, Russia

    A. M. Uzdenova

  • Kuban State University, Krasnodar, 350040, Russia

    A. V. Kovalenko, M. Kh. Urtenov & V. V. Nikonenko

References
  1. Maletzki, F., Rösler, H.W., and Staude, E., Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection, J. Membr. Sci., 1992, vol. 71, p. 105.
  2. Pismenskaya, N.D. Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, P., Pourcelly, G., and Larshe, K., Coupled convection of solution near the surface of ionexchange membranes in intensive current regimes, Russ. J. Electrochem., 2007, vol. 43, p. 307.
  3. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R.G.H., Mugele, F., and Wessling, M., Direct observation of a nonequilibrium electro-osmotic instability, Phys. Rev. Lett., 2008, vol. 101, 236101.
  4. Vasil’eva, V.I., Zhiltsova, A.V., Malykhin, M.D., Zabolotskii, V.I., Lebedev, K.A., Chermit, R.Kh., and Sharafan, M.V., Effect of the chemical nature of the ionogenic groups of ion-exchange membranes on the size of the electroconvective instability region in highcurrent modes, Russ. J. Electrochem., 2014, vol. 50, p. 120.
  5. Rubinstein, I. and Zaltzman, B., Electro-osmotically induced convection at a permselective membrane, Phys. Rev. E, 2000, vol. 62, no. 2, p. 2238.
  6. Kwak, R., Pham, V.S., Lim, K.M., and Han, J., Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for convection vortices, Phys. Rev. Lett., 2013, vol. 110, 114501.
  7. Urtenov, M.K., Uzdenova, A.M., Kovalenko, A.V., Nikonenko, V.V., Pismenskaya, N.D., Vasil’eva, V.I., Sistat, P., and Pourcelly, G., Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells, J. Membr. Sci., 2013, vol. 447, p. 190.
  8. Daiguji, H., Yang, P.D., and Majumdar, A., Ion transport in nanofluidic channels, Nano Letters, 2004, vol. 4, no. 1, p. 137.
  9. Dukhin, S.S. and Mishchuk, N.A., Unlimited increase in the current through ionite granes, Kolloidn. Zh., 1988, vol. 49, no. 6, p. 1047.
  10. Dukhin, S.S., Electrokinetic phenomena of second kind and their applications, Adv. Colloid Interface Sci., 1991, vol. 35, p. 173.
  11. Mishchuk, N.A., Concentration polarization of interface and non-linear electrokinetic phenomena, Adv. Colloid Interface Sci., 2010, vol. 160, p. 16.
  12. Rubinstein, I. and Zaltzman, B., Equilibrium electroconvective instability, Phys. Rev. Lett., 2015, vol. 114, 114502.
  13. Zaltzman, B. and Rubinstein, I., Electro-osmotic slip and electroconvective instability, J. Fluid Mech., 2007, vol. 579, p. 173.
  14. Wessling, M., Morcillo, L.G., and Abdu, S., Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities, Sci. Rep., 2014, vol. 4, p. 4294.
  15. Dukhin, S.S. and Mishchuk, N.A., Intensification of electrodialysis based on electroosmosis of the second kind, J. Membr. Sci., 1993, vol. 79, p. 199.
  16. Nikonenko, V.V., Vasil’eva, V.I., Akberova, E.M., Uzdenova, A.M., Urtenov, M.K., Kovalenko, A.V., Pismenskaya, N.P., Mareev, S.A., and Pourcelly, G., Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes, Adv. Colloid Interface Sci., 2016, vol. 235, p. 233.
  17. Rubinstein, I., Staude, E., and Kedem, O., Role of the membrane surface in concentration polarization at ionexchange membranes, Desalination, 1988, vol. 69, p. 101.
  18. Rubinstein, I. and Shtilman, L., Voltage against current curves of cation-exchange membranes, J. Chem. Soc., Faraday Trans., 1979, vol. 75, p. 231.
  19. Rubinstein, I., Zaltzman, B., and Pundik, T., Ionexchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes, Phys. Rev. E, 2002, vol. 65, 041507.
  20. Belova, E.I., Lopatkova, G.Yu., Pismenskaya, N.D., Nikonenko, V.V., Larchet, C., and Pourcelly, G., The effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer, J. Phys. Chem. B, 2006, vol. 110, p. 13458.
  21. Dydek, E.V., Zaltzman, B., Rubinstein, I., Deng, D.S., Mani, A., and Bazant, M.Z., Overlimiting current in a microchannel, Phys. Rev. Lett., 2011, vol. 107, 118301.
  22. Green, Y. and Yossifon, G., Dynamical trapping of colloids at the stagnation points of electro-osmotic vortices of the second kind, Phys. Rev. E, 2013, vol. 87, no. 3, 033005.
  23. Demekhin, E.A., Shelistov, V.S., and Polyanskikh, S.V., Linear and nonlinear evolution and diffusion layer selection in V.S. electrokinetic instability, Phys. Rev. E, 2011, vol. 84, 036318.
  24. Shelistov, V., Nikitin, N., Ganchenko, G., and Demekhin, E., Numerical modeling of electrokinetic instability in semipermeable membranes, Dokl. Phys., 2011, vol. 56, p. 538.
  25. Pham, S.V., Li, Z., Lim, K.M., White, J.K., and Han, J., Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of permselective membrane, Phys. Rev. E, 2012, vol. 86, 046310.
  26. Druzgalski, C.L., Andersen, M.B., and Mani, A., Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface, Phys. Fluids, 2013, vol. 25, 110804.
  27. Dukhin, S.S., Electrokinetic phenomena of the second kind and their applications, Adv. Colloid Interface Sci., 1991, vol. 35, p. 173.
  28. Mishchuk, N.A. and Takhistov, P.V., Electroosmosis of the second kind and current through curved interface, Colloids Surf. A, 1995, vol. 95, p. 119.
  29. Mishchuk, N.A., Electro-osmosis of the second kind near the heterogeneous ion-exchange membrane, Colloids Surf. A, 1998, vol. 140, p. 75.
  30. Chang, H.-C., Demekhin, E.A., and Shelistov, V.S., Competition between Dukhin’s and Rubinstein’s electrokinetic modes, Phys. Rev. E, 2012, vol. 86, 046319.
  31. Uzdenova, A.M., Kovalenko, A.V., and Urtenov, M.Kh., Matematicheskie modeli elektrokonvektsii v elektromembrannykh sistemakh (Mathematical Models of Electroconvection in Electrochemical Systems), Karachaevsk: KChGU, 2011.
  32. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination at overlimiting currents: state-of-the-art and perspectives, Desalination, 2014, vol. 342, p. 85.
  33. Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., and Nikonenko, V.V., Effect of electroconvection during pulsed electric field electrodialysis. Numerical experiments, Electrochem. Commun., 2015, vol. 51, p. 1.
  34. Uzdenova, A.M., Kovalenko, A.V., and Urtenov, M.Kh., Matematicheskoe modelirovanie membrannykh protsessov s ispol’zovaniem Comsol Multiphysics 4.3 (Mathematical Simulation of Membrane Processes with the Use of Comsol Multiphysics 4.3), Krasnodar: KGU, 2013.
  35. Newman, J.S., Electrochemical, Systems, New York: Prentice Hall, 1991, 2nd Ed.
  36. Gnusin, N.P., Zabolotskii, V.I., Nikonenko, V.V., and Urtenov, M.Kh., Convective-diffusion model of the process of electrodialysis desalination. Overlimiting current and diffusion layer, Elektrokhimiya, 1986, vol. 22, p. 298.
  37. Karatay, E., Druzgalski, C.L., and Mani, A., Simulation of chaotic electrokinetic transport: performance of commercial software versus custom-built direct numerical simulation codes, J. Colloid Interface Sci., 2015, vol. 446, p. 67.
  38. Urtenov, M.A.K., Kirillova, E.V., Seidova, N.M., and Nikonenko, V.V., Decoupling of the Nernst-Planck and Poisson equations. Application to a membrane system at overlimiting currents, J. Phys. Chem. B., 2007, vol. 111, p. 14208.
  39. Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V., Lebedev, K.A., and Nikonenko, V.V., Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes, Electrochim. Acta, 2012, vol. 59, p. 412.
  40. Rubinstein, I., Zaltzman, B., Futerman, A., Gitis, V., and Nikonenko, V., Reexamination of electrodiffusion time scales, Phys. Rev. E, 2009, vol. 79, no. 2, 021506.