Abstract / Full Text

Voltammetry of [5,10,15-tris(pentafluorophenylcorrole)]Mn(III) was investigated in four different ionic liquids (ILs): 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm-TFSI); 1-ethyl-3-methylimidazolium ethylsulfate (EMIm-EtOSO3); 1-ethyl-3-methylimidazolium triflate (EMIm-OTf); and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIm-TCB). We found that MnIV/III E 1/2 values depend on IL counter anion: OTf–< EtOSO3 < TFSI < TCB. In EMIm-TCB and BMIm- TFSI, reversible, diffusion-controlled MnIV/III reactions occurred, as evidenced in each case by the ratio of anodic to cathodic diffusion coefficients over a range of scan rates. Axial coordination was evidenced by a cathodic to anodic diffusion coefficient ratio greater than one, an increasing cathodic to anodic peak current ratio with increasing scan rate, and a split Soret band in the UV-vis spectrum of the complex.

Author information
  • Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California, 91125, USA

    Brendon J. McNicholas, Carl Blumenfeld, Wesley W. Kramer, Robert H. Grubbs, Jay R. Winkler & Harry B. Gray

  1. Earle, M.J. and Seddon, K.R., Pure Appl. Chem., 2000, vol. 72, p. 1391.
  2. Evans, R.G., Klymenko, O.V., and Price, P.D., Chem. Phys. Chem., 2005, vol. 6, p. 526.
  3. Rogers, E.I., Silvester, D.S., and Poole, D.L., J. Phys. Chem. C, 2008, vol. 112, p. 2729.
  4. Cabral, D., Howlett, P.C., and Pringle, J.M., Electrochim. Acta, 2015, vol. 180, p. 419.
  5. O’Mahony, A.M., Silvester, D.S., and Aldous, L., J. Chem. Eng. Data, 2008, vol. 53, p. 2884.
  6. Klähn, M. and Seduraman, A., J. Phys. Chem. B, 2015, vol. 119, p. 10066.
  7. Oh, Y. and Hu, X., Chem. Commun., 2015, vol. 51, p. 13698.
  8. Zeng, G., Qiu, J., and Hou, B., Chem. Eur. J., 2015, vol. 21, p. 13502.
  9. Fu, C., Aldous, L., and Dickinson, E.J.F., Chem. Commun., 2011, vol. 47, p. 7083.
  10. Aviv-Harel, I. and Gross, Z. Chem. Eur. J., 2009, vol. 15, p. 8382.
  11. Aviv, I. and Gross, Z., Chem. Commun., 2007, p. 1987.
  12. Meier-Callahan, A.E., di Bilio, A.J., and Simkhovich, L., Inorg. Chem., 2001, vol. 40, p. 6788.
  13. Grodkowski, J., Neta, P., and Fujita, E., J. Phys. Chem. A, 2002, vol. 106, p. 4772.
  14. Zdilla, M.J. and Abu-Omar, M.M., J. Am. Chem. Soc., 2006, vol. 128, p. 16971.
  15. Gao, Y., Liu, J., and Wang, M., Tetrahedron, 2007, vol. 63, p. 1987.
  16. Schechter, A., Stanevsky, M., and Mahammed, A., Inorg. Chem., 2012, vol. 51, p. 22.
  17. Shen, J., El Ojaimi, M., and Chkounda, M., Inorg. Chem., 2008, vol. 47, p. 7717.
  18. Liu, H-Y., Mahmood, M.H., and Qiu, S-X.S., Coord. Chem. Rev., 2013, vol. 257, p. 1306.
  19. Golubkov, G., Bendix, J., and Gray, H.B., Angew. Chem. Int. Ed. Engl., 2001, vol. 40, p. 2132.
  20. Mingos, D.M.P., Day, P., and Dahl, J.P., Molecular Electronic Structures of Transition Metal Complexes I. Structure and Bonding, New York: Springer, 2012, p. 49.
  21. Schme_Mingosisser, M., Illner, P., and Puchta, R., Chem. Eur. J., 2012, vol. 18, p. 10969.
  22. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  23. Ohno, H., Electrochemical Aspects of Ionic Liquids, New York: Wiley, 2011.
  24. Fröba, A.P., Wasserscheid, P., and Gerhard, D., J. Phys. Chem. B, 2007, vol. 111, p. 12817.
  25. Barrosse-Antle, L.E., Bond, A.M., and Compton, R.G., Chem. Asian J., 2010, vol. 5, p. 202.
  26. Yan, P-F., Yang, M., and Liu, X., J. Chem. Thermodyn., 2010, vol. 42, p. 817.
  27. Edwards, N.Y., Elkey, R.A., and Loring, M.I., Inorg. Chem., 2005, vol. 44, p. 3700.