Examples



mdbootstrap.com



 
Статья
2014

Dislocation-Disclination Substructures Formed in FCC Polycrystals Under Large Plastic Deformations: Evolution and Association with Flow Stress


E. V. KozlovE. V. Kozlov, N. A. KonevaN. A. Koneva, L. I. TrishkinaL. I. Trishkina
Российский физический журнал
https://doi.org/10.1007/s11182-014-0223-9
Abstract / Full Text

The evolution of dislocation substructures formed in polycrystalline Cu−Al and Cu−Mn alloys undergoing large plastic deformations is studied, using transmission electron microscopy. Microband and fragmented substructures are examined. The Al and Mn alloying element concentrations for which the substructures are formed have been found. The mechanisms involved in the formation of the substructures during the substructural evolution in the alloys subjected to deformation have been revealed. Parameters describing the substructures under study have been measured. The dependence of the parameters on the flow stress has been established.

Author information
  • Tomsk State University of Architecture and Building, Tomsk, RussiaÉ. V. Kozlov, N. A. Koneva & L. I. Trishkina
References
  1. V. V. Rybin, Large Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).
  2. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and E. V. Kozlov, Theoretical and Experimental Studies of Disclinations, V. I. Vladimirov, ed. [in Russian], A. F. Ioffe Physical-Technical Institute, Leningrad (1986), pp. 116−126.
  3. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Work Hardening and Failure of Polycrystalline Materials [in Russian], Naukova Dumka, Kiev (1989).
  4. N. A. Koneva and É. V. Kozlov, Structural Levels of Plastic Deformation and Fracture [in Russian], V. E. Panin, ed., Nauka, Novosibirsk (1990), pp. 123–186.
  5. É. V. Kozlov, N. A. Koneva, and L. I. Trishkina, The Dislocation-Disclination Substructures and the Curvature of the Crystal Lattice, in: The Dislocations and Rotational Strain of Solids [in Russian], A. E. Romanov, ed., A. F. Ioffe Physical-Technical Institute, Leningrad (1990), pp. 89–125.
  6. N. A. Koneva, É. V. Kozlov, and L. I. Trishkina, Metallofizika, 13, No. 10, 49–58 (1991).
  7. D. L. Holt, J. Appl. Phys., 41, No. 8, 3197–3201 (1970).
  8. H. Mughrabi, Constitutive Equations in Plasticity, MIT Press, London, Cambridge (1975), pp 199–250.
  9. N. A. Koneva, D. V. Lychagin, В. А. Starenchenko, and É. V. Kozlov, Deform. Fract. Mater., No. 9, 24–32 (2006).
  10. N. A. Koneva, L. I. Trishkina, and É. V. Kozlov, Russ. Phys. J., 54, No. 8, 867–884 (2011).
  11. Th. Steffens, Ch. Schwink, A. Korner, and H. P. Karnthaler, Phil. Mag. A, 56, No. 2, 161–173 (1987).
  12. S. Crampin, D. D. Vedensky, and R. Monnier, Phil. Mag. A.,67, No. 6, 1447–1457 (1993).
  13. N. A. Koneva, L. I. Trishkina, T. V. Cherkasova, and É. V. Kozlov, Fund. Probl. Sovrem. Materialoved., 10, No. 2, 283–289 (2013).
  14. N. Hansen and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng., 81, 141–161 (1986).
  15. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng., A113, 1–41 (1989).
  16. É. V. Kozlov, V. A. Starenchenko, and N. A. Koneva, Metally, No. 5, 152–161 (1993).
  17. F. R. N. Nabarro, L. S. Basinski, and D. B. Holt, The Plasticity of Pure Single Crystals, Taylor, London (1964).
  18. L. E. Popov, N. A. Koneva, and I. V. Tereshko, Work Hardening of Ordered Alloys [in Russian], Metallurgiya, Moscow (1979).