Examples



mdbootstrap.com



 
Статья
2022

New Epoxy Resin Polymerization Catalysts Based on N,N-Dimethylaminoalkylamides of Perfluoroalkanoic Acids


V. A. OsipovaV. A. Osipova, T. I. GorbunovaT. I. Gorbunova, M. A. BarabanovM. A. Barabanov, A. V. MekhaevA. V. Mekhaev, D. I. VichuzhaninD. I. Vichuzhanin, S. V. SmirnovS. V. Smirnov, A. V. PestovA. V. Pestov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427222010074
Abstract / Full Text

A series of N,N-dimethylaminoalkylamides of perfluorobutanoic and perfluoropentanoic acids were prepared, and the activity of these amides in curing of ED-20 commercial epoxy resin was studied. Data of differential thermal analysis and Fourier IR spectroscopy, taking into account the gel fraction content of the cured composites, show that the curing agent reactivity increases with an increase in the weight fraction of the hydrocarbon moiety and with a decrease in its fluorine content. Evaluation of the adhesion strength in gluing St.3 steel with amide-cured ED-20 epoxy resin shows that all the compounds synthesized ensure two times more efficient gluing compared to the resin cured with the standard curing agent, polyethylenepolyamine. In gluing of D16 aluminum alloy, the gluing efficiency, on the contrary, slightly decreases.

Author information
  • Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, RussiaV. A. Osipova, T. I. Gorbunova, M. A. Barabanov, A. V. Mekhaev & A. V. Pestov
  • Institute of Engineering Science, Ural Branch, Russian Academy of Sciences, 620049, Yekaterinburg, RussiaD. I. Vichuzhanin & S. V. Smirnov
  • Yeltsin Ural Federal University, 620002, Yekaterinburg, RussiaA. V. Pestov
References
  1. Meng, F., Zhang, T., Liu, L., Cui, Y., and Wang, F., Surf. Coat. Technol., 2019, vol. 361, pp. 188–195. https://doi.org/10.1016/j.surfcoat.2019.01.037
  2. Ferdosian, F., Ebrahimi, M., and Jannesari, A., Thermochim. Acta, 2013, vol. 568, pp. 67–73. https://doi.org/10.1016/j.tca.2013.06.001
  3. Duan, H., Xu, X., Leng, K., Zhang, S., Han, Y., Gao, J., Yu, Q., and Wangm Z., J. Appl. Polym. Sci., 2021, vol. 138, ID 50792. https://doi.org/10.1002/app.50792
  4. Xiong, X., Zhou, L., Ren, R., Ma, X., and Chen, P., Polym. J., 2018, vol. 140, pp. 326–333. https://doi.org/10.1016/j.polymer.2018.02.043
  5. Parıldar, R.A. and Ibik, A.A.B., Prog. Org. Coat., 2013, vol. 76, no. 6, pp. 955–958. https://doi.org/10.1016/j.porgcoat.2012.10.019
  6. Rakhmatullina, A.P., Satbaeva, N.S., Cherezova, E.N., Izergina, A.S., Russ. J. Appl. Chem., 2020, vol. 93, no. 2, pp. 182–187. https://doi.org/10.1134/S1070427220020044 
  7. Pestov, A.V., Puzyrev, I.S., Mekhaev, A.V., Gorbunova, T.I., Saloutin, V.I., Smirnov, S.V., Vichuzhanin, D.I., and Matafonov, P.P., Russ. J. Appl. Chem., 2014, vol. 87, pp. 474–479. https://doi.org/10.1134/S10704272140400132 
  8. Xiong, X., Zhou, L., Ren, R., Ma, X., and Chen, P., Polym. J., 2018, vol. 140, pp. 326–333. https://doi.org/10.1016/j.polymer.2018.02.043
  9. López-Barajas, F., Ramos-DeValle, L.F., Sánchez-Valdes, S., Ramírez-Vargas, E., Martínez-Colunga, G., Espinoza-Martínez, A.B., Flores-Gallardo, S., Mendez-Nonell, J., Morales-Cepeda, A.B., Lozano-Ramirez, T., and Beltrán-Ramírez, F.I., Polym. Test., 2019, vol. 73, pp. 346–351. https://doi.org/10.1016/j.polymertesting.2018.11.043
  10. Arjunan, V., Rani, T., Santhanam, R., and Mohan, S., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2012, vol. 96, pp. 24–34. https://doi.org/10.1016/j.saa.2012.05.012
  11. Rolere, S., Coulon, J.-F., and Poncin-Epaillard, F., Eur. Polym. J., 2017, vol. 91, pp. 61–69. https://doi.org/10.1016/j.eurpolymj.2017.03.053
  12. Tan, J., Liu, W., and Wang, Z., Prog. Org. Coat., 2017, vol. 105, pp. 353–361. https://doi.org/10.1016/j.porgcoat.2017.01.018