Examples



mdbootstrap.com



 
Статья
2021

Tris(3-fluorophenyl)antimony Dihalides: Synthesis and Structure


V. V. SharutinV. V. Sharutin, O. K. SharutinaO. K. Sharutina
Российский журнал общей химии
https://doi.org/10.1134/S1070363221050121
Abstract / Full Text

Tris(3-fluorophenyl)antimony dichloride, dibromide, and diiodide were obtained by the reaction of tris(3-fluorophenyl)antimony with chlorine, bromine, and iodine in benzene. Dichloride and dibromide were also obtained in the reaction of tris(3-fluorophenyl)antimony with copper dihalides in acetone. Tris(3-fluorophenyl)antimony difluoride was obtained in the exchange reaction between tris(3-fluorophenyl)antimony dichloride and sodium fluoride. According to single crystal X-ray diffraction data, centrosymmetric dichloride and dibromide molecules and four types of crystallographically independent diiodide molecules have a trigonal-bipyramidal configuration with electronegative ligands in axial positions.

Author information
  • National Research South Ural State University, 454080, Chelyabinsk, RussiaV. V. Sharutin & O. K. Sharutina
References
  1. Sharutin, V.V., Poddel’sky, A.I., and Sharutina, O.K., Russ. J. Coord. Chem., 2020, vol. 46, no. 10, p. 663. https://doi.org/10.1134/S1070328420100012
  2. Onishi, K., Douke, M., Nakamura, T., Ochiai, Y., Kakusawa, N., Yasuike, S., Kurita, J., Yamamoto, C., Kawahata, M., Yamaguchi, K., and Yagura, T., J. Inorg. Biochem., 2012, vol. 117, p. 77. https://doi.org/10.1016/j.jinorgbio.2012.09.009
  3. Copolovici, D., Isaia, F., Breunig, H.J., Rat, C.I., and Silvestru, C., RSC Adv., 2014, vol. 4, p. 26569. https://doi.org/10.1039/C4RA03482A
  4. Chirca, I., Soran, A., Silvestru, A., and Silvestru, C., Rev. Roum. Chim., 2015, vol. 60, p. 643.
  5. Copolovici, D., Bojan, V.R., Rat, C.I., Silvestru, A., Breunig, H.J., and Silvestru, C., Dalton Trans., 2010, vol. 39, p. 6410. https://doi.org/10.1039/C003318A
  6. Okajima, S., Yasuike, S., Kakusawa, N., Osada, A., Yamaguchi, K., Seki, H., and Kurita, J., J. Organomet. Chem., 2002, vol. 656, p. 234. https://doi.org/10.1016/S0022-328X(02)01622-4
  7. Yamamichi, H., Matsukawa, S., Kojima, S., Ando, K., and Yamamoto, Y., Heteroatom Chem., 2011, vol. 22, p. 553. https://doi.org/10.1002/hc.20721
  8. Reznicek, T., Dostal, L., Ruzicka, A., Vinklarek, J., Rezacova, M., and Jambor, R., Appl. Organomet. Chem., 2012, vol. 26, p. 237. https://doi.org/10.1002/aoc.2845
  9. Obata, T., Matsumura, M., Kawahata, M., Hoshino, S., Yamada, M., Murata, Y., Kakusawa, N., Yamaguch, K., Tanaka, M., and Yasuike, S., J. Organomet. Chem., 2016, vol. 807, p. 17. https://doi.org/10.1016/j.jorganchem.2016.02.008
  10. Matano, Y., Nomura, H., Hisanaga, T., Nakano, H., Shiro, M., and Imahori, H., Organometallics, 2004, vol. 23, p. 5471. https://doi.org/10.1021/om0494115
  11. Sharutin, V.V. and Sharutina, O.K., Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, p. 1631. https://doi.org/10.1134/S0036023615120219
  12. Hirai, M. and Gabbai, F.P., Angew. Chem. Int. Ed., 2015, vol. 54, p. 1205. https://doi.org/10.1002/anie.201410085
  13. Matano, Y., Nomura, H., and Suzuki, H., Inorg. Chem., 2000, vol. 39, p. 1340. https://doi.org/10.1021/ic991120e
  14. Matano, Y., Nomura, H., and Suzuki, H., Inorg. Chem., 2002, vol. 41, p. 1940. https://doi.org/10.1021/ic0110575
  15. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., and Chagarova, O.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 10, p. 1665. https://doi.org/10.1134/S1070363212100064
  16. Sharutin, V.V., Sharutina, O.K., Reshetnikova, R.V., Lobanova, E.V., and Efremov, A.N., Russ. J. Inorg. Chem., 2017, vol. 62, no. 11, p. 1450. https://doi.org/10.1134/S003602361711016X
  17. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Andreev, P.V., Russ. J. Coord. Chem., 2018, vol. 44, no. 10, p. 635. https://doi.org/10.1134/S107032841810010X
  18. Efremov, A.N., Vestn. YuRGU, Ser. Khim., 2019, vol. 11, no. 1, p. 34. https://doi.org/10.14529/chem190104
  19. Yin, H., Quan, L., and Li, L., Inorg. Chem. Commun., 2008, vol. 11, p. 1121. https://doi.org/10.1016/j.inoche.2008.06.017
  20. Shu, W., Liu, D., Huang, K., Wang, K., and Li, Y., Trans. Nonferrous Met. Soc. China, 1992, vol. 2, no. 2, p. 32.
  21. Domagala, M., Huber, F., and Preut, H., Z. Anorg. Allg. Chem., 1989, vol. 574, p. 130. https://doi.org/10.1002/zaac.655740114
  22. Batsanov, S.S., Zh. Neorg. Khim., 1991, vol. 36, no. 12, p. 3015.
  23. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
  24. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
  25. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726
  26. Kocheshkov, K.A., Skoldinov, A.P., and Zemlyanskii, N.N., Metody elementoorganicheskoi khimii. Sur’ma, vismut (Methods of Organoelement Chemistry. Antimony, Bismuth), Moscow: Nauka, 1976.