Effects of Water on Electrochemical Behavior of ZnCl2 and FeCl3 in Deep Eutectic Solvent Composed of Choline Chloride and Urea

F. ZhuF. Zhu, R. X. DengR. X. Deng, Q. H. JiangQ. H. Jiang
Российский электрохимический журнал
Abstract / Full Text

Deep eutectic solvents (DESs) are promising as solvents and electrolytes in electrochemistry due to low volatility, wide electrochemical window, moderate ionic conductivity and solubility to some species. Water content has profound effects on physico-chemical properties of DESs and could be used to tune electrochemical performance of redox active species in DESs. Effects of water content on reline (mixture composed of choline chloride and urea in molar ratio of 1 : 2) were investigated, including ionic conductivity, electrochemical stability of reline and electrochemical processes of ZnCl2 and FeCl3 in reline. The experimental results showed, the ionic conductivity of reline is sensitive to water, when water content is below 41.0 wt %, and ionic conductivity keeps stable above 51.0 wt % water content. When water content changes from 41.0 to 51.0 wt %, transition point from “water-in-reline” to “reline components-in-water aqueous solvent” was observed from both electrochemical stability tests and electrochemical behavior of ZnCl2. Electrochemical processes of ZnCl2 and FeCl3 in reline are promoted with water content increase until up to 41.0 wt %.

Author information
  • College of Chemistry and Bioengineering, Yichun University, Yichun, China

    F. Zhu, R. X. Deng & Q. H. Jiang

  1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 2003, vol. 9, p. 70.
  2. Zhang, Q.H., Vigier, K.D., Royer, S., and Jerome, F., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 2012, vol. 41, p. 7108.
  3. Zhang, C., Zhang, L., and Yu, G., Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage, Acc. Chem. Res., 2020, vol. 53, p. 1648.
  4. Shah, D. and Mjalli, F.S., Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23900.
  5. Chen, Y., Yu, D., Chen, W., Fu, L., and Mu, T., Water absorption by deep eutectic solvents, Phys. Chem. Chem. Phys., 2019, vol. 21, p. 2601.
  6. Ruggeri, S., Poletti, F., Zanardi, C., Pigani, L., Zanfrognini, B., Corsi, E., Dossi, N., Salomäki, M., Kivelä, H., Lukkari, J., and Terzi, F., Chemical and electrochemical properties of a hydrophobic deep eutectic solvent, Electrochim. Acta, 2019, vol. 295, p. 124.
  7. Liao, H.G., Jiang, Y.X., Zhou, Z.Y., Chen, S.P., and Sun, S.G., Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angew. Chem. Int. Ed., 2008, vol. 47, p. 9100.
  8. Hammond, O.S., Eslava, S., Smith, A.J., Zhang, J., and Edler, K.J., Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting, J. Mater. Chem. A, 2017, vol. 5, p. 16189.
  9. Hammond, O.S., Edler, K.J., Bowron, D.T., and Torrente-Murciano, L., Deep eutectic-solvothermal synthesis of nanostructured ceria, Nat. Commun., 2017, vol. 8, p. 14150.
  10. Cherigui, E.A.M., Sentosun, K., Mamme, M.H., Lukaczynska, M., Terryn, H., Bals, S., and Ustarroz, J., On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents, J. Phys. Chem. C, 2018, vol. 122, p. 23129.
  11. Thanu, D.P.R., Raghavan, S., and Keswani, M., Effect of water addition to choline chloride-urea deep eutectic solvent (DES) on the removal of post-etch resid ues formed on copper, IEEE Trans. Semicond. Manuf., 2012, vol. 25, p. 516.
  12. Zhao, J., Zhang, J., Yang, W., Chen, B., Zhao, Z., Qiu, H., Dong, S., Zhou, X., Cui, G., and Chen, L., Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries, Nano Energy, 2019, vol. 57, p. 625.
  13. Yaghoobnejad Asl, H., Sharma, S., and Manthiram, A., The critical effect of water content in the electrolyte on the reversible electrochemical performance of Zn–VPO4F cells, J. Mater. Chem. A, 2020, vol. 8, p. 8262.
  14. Li, R., Dong, Q., Xia, J., Luo, C., Sheng, L., Cheng, F., and Liang, J., Electro deposition of composition controllable ZnNi coating from water modified deep eutectic solvent, Surf. Coat. Technol., 2019, vol. 366, p. 138.
  15. Hammond, O.S., Bowron, D.T., and Edler, K.J., The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution, Angew. Chem. Int. Ed., 2017, vol. 56, p. 9782.
  16. Kumari, P., Shobhna, Kaur, S., and Kashyap, H.K., Influence of hydration on the structure of reline deep eutectic solvent: a molecular dynamics study, ACS Omega, 2018, vol. 3, p. 15246.
  17. Zhekenov, T., Toksanbayev, N., Kazakbayeva, Z., Shah, D., and Mjalli, F.S., Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions, Fluid Phase Equilib., 2017, vol. 441, p. 43.
  18. D’Agostino, C., Gladden, L.F., Mantle, M.D., Abbott, A.P., Ahmed, E.I., Al-Murshedi, A.Y.M., and Harris, R.C., Molecular and ionic diffusion in aqueous—deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 15297.
  19. Hammond, O.S., Li, H., Westermann, C., Al-Murshedi, A.Y.M., Endres, F., Abbott, A.P., Warr, G.G., Edler, K.J., and Atkin, R., Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content, Nanoscale Horizons, 2019, vol. 4, p. 158.
  20. Xu, J., Ma, Q., Su, H., Qiao, F., Leung, P., Shah, A., and Xu, Q., Redox characteristics of iron ions in different deep eutectic solvents, Ionics, 2020, vol. 26, p. 483.
  21. Du, C.L., Yang, H.Y., Chen, X.B., Wang, L.J., Dong, H., Ning, Y.S., Lai, Y.J., Jia, J.P., and Zhao, B.Y., Effect of coordinated water of hexahydrate on nickel platings from choline-urea ionic liquid, J. Mater. Sci., 2018, vol. 53, p. 10758.
  22. Valverde, P.E., Green, T.A., and Roy, S., Effect of water on the electrodeposition of copper from a deep eutectic solvent, J. Appl. Electrochem., 2020, vol. 50, p. 699.
  23. Lukaczynska-Anderson, M., Mamme, M.H., Ceglia, A., Van den Bergh, K., De Strycker, J., De Proft, F., Terryn, H., and Ustarroz, J., The role of hydrogen bond donor and water content on the electrochemical reduction of Ni2+ from solvents—an experimental and modelling study, Phys. Chem. Chem. Phys., 2020, vol. 22, p. 16125.
  24. Whitehead, A.H., Pölzler, M., and Gollas, B., Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol, J. Electrochem. Soc., 2010, vol. 157, p. D328.
  25. Abbott, A.P., Barron, J.C., Frisch, G., Gurman, S., Ryder, K.S., and Fernando Silva, A., Double layer effects on metal nucleation in deep eutectic solvents, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 10224.
  26. Vieira, L., Schennach, R., and Gollas, B., The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents, Electrochim. Acta, 2016, vol. 197, p. 344.
  27. Song, Y.X., Tang, J., Hu, J.G., Yang, H., Gu, W.M., Fu, Y.N., and Ji, X.B., Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation, Electrochim. Acta, 2017, vol. 240, p. 90.
  28. Alesary, H.F., Cihangir, S., Ballantyne, A.D., Harris, R.C., Weston, D.P., Abbott, A.P., and Ryder, K.S., Influence of additives on the electrodeposition of zinc from a deep eutectic solvent, Electrochim. Acta, 2019, vol. 304, p. 118.
  29. Xu, Q., Zhao, T.S., Wei, L., Zhang, C., and Zhou, X.L., Electrochemical characteristics and transport properties of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent, Electrochim. Acta, 2015, vol. 154, p. 462.
  30. Yue, D., Jia, Y., Yao, Y., Sun, J., and Jing, Y., Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea, Electrochim. Acta, 2012, vol. 65, p. 30.
  31. Hills, G., Kaveh Pour, A., and Scharifker, B., The formation and properties of single nuclei, Electrochim. Acta, 1983, vol. 28, p. 891.
  32. Bard, A.J. and Faulkner, L.R., Electrochemical methods: fundamentals and applications, 2nd ed., Wiley: New York, 2001.
  33. Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, Anal. Chem., 1965, vol. 37, p. 1351.